• Laser & Optoelectronics Progress
  • Vol. 57, Issue 22, 220002 (2020)
Jimin Chen1 and Zehao Lin2、*
Author Affiliations
  • 1Nanjing Forest Police College, Nanjing, Jiangsu 210023, China
  • 2College of Information Science and Technology, Donghua University, Shanghai 201620, China
  • show less
    DOI: 10.3788/LOP57.220002 Cite this Article Set citation alerts
    Jimin Chen, Zehao Lin. End-to-End Learning-Based Image Compression: A Review[J]. Laser & Optoelectronics Progress, 2020, 57(22): 220002 Copy Citation Text show less
    References

    [1] Kong F Q, Zhou Y B, Shen Q et al. End-to-end multispectral image compression using convolutional neural network[J]. Chinese Journal of Lasers, 46, 1009001(2019).

    [2] Wang H J, Jin T, Men K. Application of FA-LMBP hybird neural network algorithm in image compression[J]. Laser & Optoelectronics Progress, 56, 191005(2019).

    [3] Cheng D Q, Cai Y C, Chen L L et al. Multi-scale convolutional neural network reconstruction algorithm based on edge correction[J]. Laser & Optoelectronics Progress, 55, 091003(2018).

    [4] Ballé J, Laparra V. -11-05)[2019-12-18]. https:∥arxiv., org/abs/1611, 01704(2016).

    [6] Jia C M, Zhao Z H, Wang S S et al. Neural network based image and video coding technologies[J]. Telecommunications Science, 35, 32-42(2019).

    [7] Habibi A. Hybrid coding of pictorial data[J]. IEEE Transactions on Communications, 22, 614-624(1974). http://ieeexplore.ieee.org/document/1092258

    [8] Forchheimer R. Differential transform coding: a new hybrid coding scheme. [C]∥Picture Coding Symposium(PCS-81), [S. l.]:[s. n.], 15-16(1981).

    [9] He T Y. End-to-end image and video compression[D]. Hefei: University of Science and Technology of China(2019).

    [10] Ballé J, Laparra V, Simoncelli E P. End-to-end optimization of nonlinear transform codes for perceptual quality[C]∥2016 Picture Coding Symposium (PCS), December 4-7, 2016, Nuremberg, Germany., 1-5(2016).

    [11] Ballé J, Minnen D, Singh S et al. -05-01)[2019-12-18]. https:∥arxiv., org/abs/1802, 01436(2018).

    [12] Toderici G, O'Malley S M, Hwang S J et al. -03-01)[2019-12-18]. https:∥arxiv., org/abs/1511, 06085(2016).

    [13] Toderici G, Vincent D, Johnston N et al. Full resolution image compression with recurrent neural networks[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 21-26, 2017, Honolulu, HI, USA., 5435-5443(2017).

    [14] Theis L, Shi W Z, Cunningham A et al. -03-01)[2019-12-18]. https:∥arxiv., org/abs/1703, 00395(2017).

    [15] Zhou L, Sun Z H, Wu X J et al. End-to-end optimized image compression with attention mechanism. [C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, [S. l.]: [s.n.](2019).

    [16] Agustsson E, Mentzer F, Tschannen M et al[2019-12-18]. Soft-to-hard vector quantization for end-to-end learning compressible representations [2019-12-18].https:∥www.cnblogs.com/lucifer1997/p/11203729.html..

    [17] Alexandre D, Chang C P, Peng W H et al. Learned image compression with soft bit-based rate-distortion optimization[C]∥2019 IEEE International Conference on Image Processing (ICIP), September 22-25, 2019, Taipei, Taiwan, China., 1715-1719(2019).

    [18] Zhao L J, Bai H H, Wang A H et al. Multiple description convolutional neural networks for image compression[J]. IEEE Transactions on Circuits and Systems for Video Technology, 29, 2494-2508(2019). http://ieeexplore.ieee.org/document/8445655

    [19] Bai H H, Zhu C, Zhao Y. Optimized multiple description lattice vector quantization for wavelet image coding[J]. IEEE Transactions on Circuits and Systems for Video Technology, 17, 912-917(2007).

    [20] Huffman D. A method for the construction of minimum-redundancy codes[J]. Proceedings of the IRE, 40, 1098-1101(1952).

    [21] Rissanen J, Langdon G. Universal modeling and coding[J]. IEEE Transactions on Information Theory, 27, 12-23(1981).

    [22] Mentzer F, Agustsson E, Tschannen M et al. Conditional probability models for deep image compression[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA., 4394-4402(2018).

    [23] Huang C, Liu H J, Chen T et al. Extreme image coding via multiscale autoencoders with generative adversarial optimization[C]∥2019 IEEE Visual Communications and Image Processing (VCIP), December 1-4, 2019, Sydney, Australia., 1-4(2019).

    [24] Liu H J, Chen T, Shen Q et al. -06-05)[2019-12-18]. https:∥arxiv., org/abs/1806, 01496(2018).

    [25] Agustsson E, Tschannen M, Mentzer F et al. Generative adversarial networks for extreme learned image compression[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV), October 27 - November 2, 2019, Seoul, Korea (South)., 221-231(2019).

    [26] Ma S W, Zhang X F, Jia C M et al. Image and video compression with neural networks: a review[J]. IEEE Transactions on Circuits and Systems for Video Technology, 30, 1683-1698(2020).

    [27] Minnen D, Ballé J, Toderici G. Joint autoregressive. -09-08)[2019-12-18]. https:∥arxiv., org/abs/1809, 02736(2018).

    [28] Chen T, Liu H J, Ma Z, improved context modeling[EB/OL] et al. -10-11)[2019-12-18]. https:∥arxiv., org/abs/1910, 06244(2019).

    [29] Zhao L J, Bai H H, Wang A H et al. Learning a virtual codec based on deep convolutional neural network to compress image[J]. Journal of Visual Communication and Image Representation, 63, 102589(2019).

    [30] Li M, Zuo W M, Gu S H et al. Learning convolutional networks for content-weighted image compression[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA., 3214-3223(2018).

    [31] Shi W Z, Caballero J, Huszár F et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016,, 1874-1883(2016).

    [32] Lee J, Cho S. -05-06)[2019-12-18]. https:∥arxiv., org/abs/1809, 10452(2019).

    [33] Oktay D, Ballé J, Singh S et al. -02-16)[2020-04-17]. https:∥arxiv., org/abs/1906, 06624(2020).

    [34] Johnston N, Vincent D, Minnen D et al. Improved lossy image compression with priming and spatially adaptive bit rates for recurrent networks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lak, 4385-4393(2018).

    [35] Chen Y H, Yang T J, Emer J et al. Eyeriss v2: a flexible accelerator for emerging deep neural networks on mobile devices[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9, 292-308(2019).

    [36] Wang Z, Bovik A C, Sheikh H R et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 13, 600-612(2004).

    [37] Wang Z, Simoncelli E P, Bovik A C. Multiscale structural similarity for image quality assessment[C]∥The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, November 9-12, 2003, Pacific Grove, CA, USA., 1398-1402(2003).

    [38] Dosselmann R, Yang X D. A comprehensive assessment of the structural similarity index[J]. Signal, Image and Video Processing, 5, 81-91(2011).

    Jimin Chen, Zehao Lin. End-to-End Learning-Based Image Compression: A Review[J]. Laser & Optoelectronics Progress, 2020, 57(22): 220002
    Download Citation