• Acta Optica Sinica
  • Vol. 39, Issue 11, 1106006 (2019)
Yuanjie Wu1、2, Huiqi Ye1、2, Jian Han1、2, and Dong Xiao1、2、*
Author Affiliations
  • 1Nanjing Institute of Astronomical Optics & Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing, Jiangsu 210042, China;
  • 2Key Laboratory of Astronomical Optics & Technology, Nanjing Institute of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing, Jiangsu 210042, China;
  • show less
    DOI: 10.3788/AOS201939.1106006 Cite this Article Set citation alerts
    Yuanjie Wu, Huiqi Ye, Jian Han, Dong Xiao. Analysis and Improvement of Photonic Crystal Fiber Tapers for Spectral Broadening Degradation[J]. Acta Optica Sinica, 2019, 39(11): 1106006 Copy Citation Text show less
    References

    [1] Agrawal G P[M]. Nonlinear fiber optics & applications of nonlinear fiber optics, 41-121(2002).

    [2] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 78, 1135-1184(2006).

    [3] Birks T A, Wadsworth W J. Russell P S J. Supercontinuum generation in tapered fibers[J]. Optics Letters, 25, 1415-1417(2000).

    [4] Wadsworth W J, Ortigosa-Blanch A, Knight J C et al. Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source[J]. Journal of the Optical Society of America B, 19, 2148-2155(2002). http://www.opticsinfobase.org/abstract.cfm?uri=josab-19-9-2148

    [5] Barclay P E, Srinivasan K, Painter O. Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper[J]. Optics Express, 13, 801-820(2005). http://europepmc.org/abstract/MED/19494941

    [6] Zhao Y, Xia F, Li J. Sensitivity-enhanced photonic crystal fiber refractive index sensor with two waist-broadened tapers[J]. Journal of Lightwave Technology, 34, 1373-1379(2016).

    [7] Sørensen S T, Larsen C, Jakobsen C et al. Single-mode pumped high air-fill fraction photonic crystal fiber taper for high-power deep-blue supercontinuum sources[J]. Optics Letters, 39, 1097-1100(2014). http://europepmc.org/abstract/med/24562287

    [8] Wu Y J, Ye H Q, Han J et al. Astronomical laser frequency comb for high resolution spectrograph of a 2.16-m telescope[J]. Acta Optica Sinica, 36, 0614001(2016).

    [9] Stark S P, Steinmetz T, Probst R A et al. 14 GHz visible supercontinuum generation: calibration sources for astronomical spectrographs[J]. Optics Express, 19, 15690-15695(2011). http://europepmc.org/abstract/MED/21934930

    [10] Probst R A. Laser frequency combs for astronomy[D]. München: Ludwig Maximilian University of München, 43-61(2015).

    [11] Bardal S, Kamal A. Russell P S J. Photoinduced birefringence in optical fibers: a comparative study of low-birefringence and high-birefringence fibers[J]. Optics Letters, 17, 411-413(1992). http://www.opticsinfobase.org/abstract.cfm?uri=ol-17-6-411

    [12] Hosono H, Ikuta Y, Kinoshita T et al. Physical disorder and optical properties in the vacuum ultraviolet region of amorphous SiO2[J]. Physical Review Letters, 87, 175501(2001). http://europepmc.org/abstract/MED/11690278

    [13] Stone J M, Wadsworth W J, Knight J C. 1064 nm laser-induced defects in pure SiO2 fibers[J]. Optics Letters, 38, 2717-2719(2013). http://www.opticsinfobase.org/abstract.cfm?URI=ol-38-15-2717

    [14] Shikama T, Kakuta T, Shamoto Net al. Behavior of developed radiation-resistant silica-core optical fibers under fission reactor irradiation[J]. Design, 51/52, 179-183(2000).

    [15] Shim H, Liu M G, Hwangbo C et al. Four-photon absorption in the single-crystal polymer bis(paratoluene) sulfonate[J]. Optics Letters, 23, 430-432(1998). http://www.ncbi.nlm.nih.gov/pubmed/18084534

    [16] Hanczyc P, Samoc M, Norden B. Multiphoton absorption in amyloid protein fibres[J]. Nature Photonics, 7, 969-972(2013). http://www.nature.com/nphoton/journal/v7/n12/abs/nphoton.2013.282.html

    [17] Leclerc N, Pfleiderer C, Hitzler H et al. Transient 210-nm absorption in fused silica induced by high-power UV laser irradiation[J]. Optics Letters, 16, 940-942(1991). http://www.opticsinfobase.org/abstract.cfm?URI=ol-16-12-940

    [18] Kajihara K. Improvement of vacuum-ultraviolet transparency of silica glass by modification of point defects (review)[J]. Journal of the Ceramic Society of Japan, 115, 85-91(2007).

    [19] Colombe Y, Slichter D H, Wilson A C et al. Single-mode optical fiber for high-power, low-loss UV transmission[J]. Optics Express, 22, 19783-19793(2014). http://europepmc.org/abstract/MED/25321060

    [20] Hosono H, Mizuguchi M, Skuja L et al. Fluorine-doped SiO2 glasses for F2 excimer laser optics: fluorine content and color-center formation[J]. Optics Letters, 24, 1549-1551(1999). http://test.europepmc.org/abstract/MED/18079859

    [21] Wu Y J, Zou P, Ye H Q et al. Broadband supercontinuum generation from low pulse energy infrared pumps[J]. Acta Photonica Sinica, 45, 0832002(2016).

    [22] Ye H Q, Han J, Wu Y J et al. Working status of Chinese astro-comb and fiber-noise suppression[J]. Progress in Astronomy, 34, 128-133(2016).

    [23] Hao Z B, Ye H Q, Han J et al. Calibration tests of a 25-GHz mode-spacing broadband astro-comb on the fiber-fed high resolution spectrograph (HRS) of the Chinese 2.16-m telescope[J]. Publications of the Astronomical Society of the Pacific, 130, 125001(2018).

    Yuanjie Wu, Huiqi Ye, Jian Han, Dong Xiao. Analysis and Improvement of Photonic Crystal Fiber Tapers for Spectral Broadening Degradation[J]. Acta Optica Sinica, 2019, 39(11): 1106006
    Download Citation