• Journal of Infrared and Millimeter Waves
  • Vol. 39, Issue 6, 684 (2020)
Hua-Yao TU1、2, Meng LYU1, Song-Ran ZHANG1、3, Guo-Lin YU1、*, Yan SUN1, Ting-Ting KANG1, Xin CHEN1, and Ning DAI1
Author Affiliations
  • 1State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai200083, China
  • 2University of Chinese Academy of Sciences, Beijing100049, China
  • 3School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai200093, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2020.06.004 Cite this Article
    Hua-Yao TU, Meng LYU, Song-Ran ZHANG, Guo-Lin YU, Yan SUN, Ting-Ting KANG, Xin CHEN, Ning DAI. Spin-orbit coupling and Zeeman effect in HgCdTe inversion layer with interface microroughness[J]. Journal of Infrared and Millimeter Waves, 2020, 39(6): 684 Copy Citation Text show less
    References

    [1] A Rogalski. HgCdTe infrared detector material: history, status and outlook. Reports on Progress in Physics, 68, 2267-2336(2005).

    [2] A Rogalski. HgCdTe infrared detectors - Historical prospect. Proc SPIE, 4999, 431-442(2003).

    [3] J C A Sher. Physics and properties of narrow gap semiconductors. NY(2008).

    [4] S Datta, B Das. Electronic analog of the electro‐optic modulator. Applied Physics Letters, 56, 665-667(1990).

    [5] S Iordanskii, Y B Lyanda-Geller, G Pikus. JETP Lett 60, 206 (1994). Pis’ ma Zh Eksp Teor Fiz, 60, 199-206(1994).

    [6] G M Minkov, A V Germanenko, O E Rut. Weak antilocalization in quantum wells in tilted magnetic fields. Physical Review B, 70, 155323(2004).

    [7] L E Golub. Weak antilocalization in high-mobility two-dimensional systems. Physical Review B, 71, 23510(2005).

    [8] A G Mal’Shukov, K A Chao, M Willander. Magnetoresistance of a weakly disordered III-V semiconductor quantum well in a magnetic field parallel to interfaces. Physical Review B, 56, 6436-6439(1997).

    [9] A G Mal’Shukov, V A Froltsov, K A Chao. Crystal anisotropy effects on the weak-localization magnetoresistance of a III-V semiconductor quantum well in a magnetic field parallel to interfaces. Physical Review B, 59, 5702-5710(1999).

    [10] S A Studenikin, P T Coleridge, G Yu. Electron spin–orbit splitting in a InGaAs/InP quantum well studied by means of the weak-antilocalization and spin-zero effects in tilted magnetic fields. Semiconductor Science and Technology, 20, 1103-1110(2005).

    [11] S Cabañas, T Schäpers, N Thillosen. Suppression of weak antilocalization in an AlxGa1-xN∕GaN two-dimensional electron gas by an in-plane magnetic field. Physical Review B, 75, 195329(2007).

    [12] N Thillosen, T Schäpers, N Kaluza. Weak antilocalization in a polarization-doped AlxGa1-xN∕GaN heterostructure with single subband occupation. Applied Physics Letters, 88, 022111(2006).

    [13] M Lv, G Yu, Y Xu. Dependence of spin dynamics on in-plane magnetic field in AlGaN/GaN quantum wells. EPL (Europhysics Letters), 112, 67003(2015).

    [14] V López-Richard, G E Marques, C Trallero-Giner. Anomalous Landé factor in narrow-gap semiconductor heterostructures. Solid State Communications, 114, 649-654(2000).

    [15] X C Zhang, K Ortner, A Pfeuffer-Jeschke. Effective g factor of n-type HgTe/Hg1-xCdxTe single quantum wells. Physical Review B, 69, 1153401-1153407(2004).

    [16] Z J Qiu, Y S Gui, X Z Shu. Giant Rashba spin splitting in HgTe/HgCdTe quantum wells. Acta Physica Sinica, 53, 1186-1190(2004).

    [17] G Z Zheng, S L Guo, D Y Tang. Shubnikov-de haas oscillation in n-Hg1-xCdxTe. Acta Physica Sinica, 36, 114-119(1987).

    [18] S V Gudina, V N Neverov, E V Ilchenko. Electron effective mass and g factor in wide HgTe quantum wells. Semiconductors, 52, 12-18(2018).

    [19] M Kohda, J Nitta. Enhancement of spin-orbit interaction and the effect of interface diffusion in quaternary InGaAsP/InGaAs heterostructures. Physical Review B, 81, 115118(2010).

    [20] H Mathur, H U Baranger. Random Berry phase magnetoresistance as a probe of interface roughness in Si MOSFET’s. Physical Review B, 64, 235325(2001).

    [21] J S Meyer, A Altland, B L Altshuler. Quantum transport in parallel magnetic fields: A realization of the Berry-Robnik symmetry phenomenon. Physical Review Letters, 89, 206601(2002).

    [22] X Z Liu, G Yu, L M Wei. The nonlinear Rashba effect in Hg0.77Cd0.23Te inversion layers probed by weak antilocalization analysis. Journal of Applied Physics, 113, 013704(2013).

    [23] J H Chu, Z Y Mi, R Sizmann. Subband structure in the electric quantum limit for Hg1-xCdxTe. Physical Review B, 44, 1717-1723(1991).

    [24] L Sun, M Lv, X Liu. Zeeman splitting and spin-orbit interaction in Hg1-xCdxTe inversion layers. EPL (Europhysics Letters), 115, 17007(2016).

    [25] R Yang, K Gao, L Wei. Weak antilocalization effect in high-mobility two-dimensional electron gas in an inversion layer on p-type HgCdTe. Applied Physics Letters, 99, 042103(2011).

    [26] J Zhu, H L Stormer, L N Pfeiffer. Spin susceptibility of an ultra-low-density two-dimensional electron system. Physical Review Letters, 90, 056805(2003).

    Hua-Yao TU, Meng LYU, Song-Ran ZHANG, Guo-Lin YU, Yan SUN, Ting-Ting KANG, Xin CHEN, Ning DAI. Spin-orbit coupling and Zeeman effect in HgCdTe inversion layer with interface microroughness[J]. Journal of Infrared and Millimeter Waves, 2020, 39(6): 684
    Download Citation