• Acta Physica Sinica
  • Vol. 69, Issue 1, 010202-1 (2020)
Da-Jun Zhang*
DOI: 10.7498/aps.69.20191647 Cite this Article
Da-Jun Zhang. Discrete integrable systems: Multidimensional consistency[J]. Acta Physica Sinica, 2020, 69(1): 010202-1 Copy Citation Text show less

Abstract

In contrast to the well-established theory of differential equations, the theory of difference equations has not quite developed so far. The most recent advances in the theory of discrete integrable systems have brought a true revolution to the study of difference equations. Multidimensional consistency is a new concept appearing in the research of discrete integrable systems. This property, as an explanation to a type of discrete integrability, plays an important role in constructing the B?cklund transformations, Lax pairs and exact solutions for discrete integrable system. In the present paper, the multidimensional consistency and its applications in the research of discrete integrable systems are reviewed.
$ { {\varPhi}}_x ={ {M \varPhi}},\; \; { M} = \left(\!\!\!\begin{array}{cc}\eta & u \\ v & -\eta\end{array}\!\!\!\right),\; \; \; { {\varPhi}} = (\phi_1, \phi_2)^{\rm T}, $(1)

View in Article

$ { {\varPhi}}_{n+j} = { {\varPhi}}(x+j\epsilon), $(2)

View in Article

$ \begin{split} & { {\varPhi}}_{n+1} = \left(\!\!\!\begin{array}{cc} 1+\epsilon \eta & \epsilon u \\\epsilon v & 1- \epsilon\eta \!\!\!\end{array} \right) { {\varPhi}}_n,\\ &{ {\varPhi}}_n = (\phi_{1,n}, \phi_{2,n})^{\rm T}. \end{split}$(3)

View in Article

$ \begin{split} &{ {\varPhi}}_{n+1} = \left(\!\!\!\begin{array}{cc} \lambda & Q_n \\ R_n & 1/\lambda \end{array}\!\!\!\right) { {\varPhi}}_n,\\&{ {\varPhi}}_n = (\phi_{1,n}, \phi_{2,n})^{\rm T}. \end{split}$(4)

View in Article

$ (Q_n, R_n) = \epsilon (u,v),\; \; \; \lambda = {\rm e}^{\epsilon \eta} $(5)

View in Article

$ H_{n+1}(x) = 2xH_n(x)-2nH_{n-1}(x). $()

View in Article

$ {J_\alpha }(x) = {\left( {\frac{x}{2}} \right)^\alpha }\sum\limits_{k = 0}^\infty {\frac{{{{( - {x^2}/4)}^k}}}{{k!{\mkern 1mu} \Gamma (\alpha + k + 1)}}} $()

View in Article

$ x^2 w''+xw'+(x^2-\alpha^2)w = 0, $()

View in Article

$ x(w_{\alpha+1}+w_{\alpha-1})-2\alpha w_{\alpha} = 0, $()

View in Article

$ f{''}(t) = 2f^3+tf-\alpha $()

View in Article

$ f_{\alpha+1}(t) = -f_{\alpha}(t)-\dfrac{\alpha+\dfrac{1}{2}}{f^{'}_{\alpha}(t)-f^2_{\alpha}(t)-\dfrac{t}{2}}, $()

View in Article

$ u_t+6uu_x+u_{xxx} = 0, $(6)

View in Article

$ (\widetilde w+w)_x = 2\lambda-\frac{1}{2}(\widetilde w -w)^2, \tag{7a}$()

View in Article

$ (\widetilde w-w)_t = \frac{1}{2}[(\widetilde w-w)^3]_x-6\lambda (\widetilde w-w)_{x}-(\widetilde w-w)_{xxx}\tag{7b} $()

View in Article

$ w_t+3(w_x)^2+ w_{xxx} = 0, $(8)

View in Article

$ (w_1+w)_x = 2\lambda_1-\frac{1}{2}(w_1 -w)^2,\tag{9a}$()

View in Article

$ (w_2+w)_x = 2\lambda_2-\frac{1}{2}(w_2 -w)^2.\tag{9b}$()

View in Article

$ (w_{12}+w_1)_x = 2\lambda_2-\frac{1}{2}(w_{12} -w_1)^2;\tag{10a}$()

View in Article

$ (w_{21}+w_2)_x = 2\lambda_1-\frac{1}{2}(w_{21} -w_2)^2.\tag{10b}$()

View in Article

$4(\lambda_1-\lambda_2) = (w_1-w_2)(w_{12}-w),$(11)

View in Article

$ (w_{n+1,m}-w_{n,m+1})(w_{n,m}-w_{n+1,m+1}) = p-q, $(12)

View in Article

$ u_t = 6u^2u_x -u_{xxx} $(13)

View in Article

$ \theta_{xx}-\theta_{tt} = \sin \theta $(14)

View in Article

$ \tan \frac{\theta_{12}-\theta}{4} = \frac{p+q}{p-q}\tan \frac{\theta_{1}-\theta_2}{4}, $(15)

View in Article

$ p \sin \frac{\theta_{12}-\theta_1+\theta_2-\theta}{4} = q\sin \frac{\theta_{12}+\theta_{1}-\theta_2-\theta}{4}. $(16)

View in Article

$ p(u_{12} u_2 - u_1 u) = q (u_{12} u_1 - u_2 u), $(17)

View in Article

$ p \sin \frac{\varphi_{12}+\varphi-\varphi_1-\varphi_2}{4} = q\sin \frac{\varphi_{12}+\varphi+\varphi_{1}+\varphi_2}{4}, $(18)

View in Article

$ p(u_{12} u - u_1 u_2) = q(u u_1u_2 u_{12} -1). $(19)

View in Article

$ u_t = u_{xx}-2u^2v,\; \; v_t = -v_{xx}-2v^2u $(20)

View in Article

$ (u_1-u_2)(uv_{12}+1)+(p-q)u = 0, \tag{21a}$()

View in Article

$ (v_1-v_2)(uv_{12}+1)-(p-q)v_{12} = 0, \tag{21b}$()

View in Article

$ \widetilde { {\varPhi}} = { T}{ {\varPhi}},\; { T} = { T}(\gamma,{ U},\widetilde { U}) = \left(\!\!\!\begin{array}{cc} 2(\eta-\gamma) + u \widetilde v & u \\ \widetilde v & 1 \end{array}\!\!\!\right), $(22)

View in Article

$ { T}_x-\widetilde { M}{ T}+{ {TM}} = 0, $(23)

View in Article

$ u_{x} = \widetilde u- u- u^2 \widetilde v,\; \; v_{x} = v - \underset{\sim }{\mathop{v}}\, + \underset{\sim }{\mathop{u}}\, v^2, $(24)

View in Article

$ \widetilde { {\varPhi}} = { T}(p/{2},{ U},\widetilde { U}){ {\varPhi}},\; \; \widehat{{ {\varPhi}} } = { T}(q/{2},{ U},{\widehat{{ U} }}){ {\varPhi}}, $(25)

View in Article

$\begin{split} & u = u_{n,m},\\ & \widetilde u = u_{n+1,m},\\ &{\widehat{u }} = u_{n,m+1}, \\ & {\widehat{\widetilde{u }}} = u_{n+1,m+1}, \end{split}$(26)

View in Article

$ (u-{\widehat{\widetilde{u }}})(\widetilde u- {\widehat{u }}) = p-q. $(27)

View in Article

$ (u-{\widetilde{\overline{u}}})(\widetilde u- {\overline{u}}) = p-r,\tag{28a}$()

View in Article

$ (u-{\widehat{\overline{u}}})({\overline{u}}- {\widehat{u }}) = r-q,\tag{28b}$()

View in Article

$ {\widehat{\widetilde{u }}} = \frac{p-q}{\widehat{u}-\widetilde{u}} + u,\tag{29a}$()

View in Article

$ {\widehat{\overline{u}}} = \frac{r-q}{{\widehat{u }}-{\overline{u}}}+u,\tag{29b}$()

View in Article

$ {\widetilde{\overline{u}}} = \frac{p-r}{{\overline{u}}-\widetilde u}+u,\tag{29c}$()

View in Article

$ \widehat{\widetilde{\overline{u}}} = \frac{(q-p)\widetilde u{\widehat{u }}+(r-q){\widehat{u }}{\overline{u}}+(p-r){\overline{u}}\widetilde u}{(q-r)\widetilde u+(p-q){\overline{u}}+(r-p){\widehat{u }}}. $()

View in Article

${ Q}(u,\widetilde u,{\widehat{u }},\widehat{\widetilde u};p,q) = 0, $(30)

View in Article

$ \begin{split} & { Q}(u,\widetilde u,{\widehat{u }},\widehat{\widetilde u};p,q) = 0, \;\; { Q}({\overline{u}},\overline{\widetilde u},\overline{{\widehat{u }}},\overline{\widehat{\widetilde u}};p,q) = 0,\\ & { Q}(u,\widetilde u,{\overline{u}},\overline{\widetilde u};p,r) = 0, \;\; { Q}({\widehat{u }},\widehat{\widetilde u},\overline{{\widehat{u }}},\overline{\widehat{\widetilde u}};p,r) = 0, \\ & { Q}(u,{\widehat{u }},{\overline{u}},\overline{{\widehat{u }}};q,r) = 0, \;\;{ Q}(\widetilde u,\widehat{\widetilde u},\overline{\widetilde u},\overline{\widehat{\widetilde u}};q,r) = 0. \end{split} $(31)

View in Article

$ \begin{split} \,& k_0 u\widetilde u{\widehat{u }}{\widehat{\widetilde{u }}} + k_1(u\widetilde u {\widehat{u }}+ u \widetilde u {\widehat{\widetilde{u }}} + u{\widehat{u }} {\widehat{\widetilde{u }}}+\widetilde u{\widehat{u }}{\widehat{\widetilde{u }}}) \\ & ~~ + k_2(\widetilde u{\widehat{u }}+u {\widehat{\widetilde{u }}}) + k_3(u\widetilde u+{\widehat{u }}{\widehat{\widetilde{u }}})+ k_4(u{\widehat{u }}+\widetilde u {\widehat{\widetilde{u }}})\\ & ~~+k_5(u+\widetilde u+{\widehat{u }}+{\widehat{\widetilde{u }}})+k_6 = 0,\\[-10pt]\end{split} $(32)

View in Article

$ {\rm H}1: \ \ (u-\widehat{\widetilde{u}})(\widetilde{u}-\widehat{u})-p+q = 0,\tag{33a}$()

View in Article

$ {\rm H}2: \ \ (u-\widehat{\widetilde{u}})(\widetilde{u}-\widehat{u})-(p-q)(u+\widetilde{u}+\widehat{u}+\widehat{\widetilde{u}}+p+q) = 0, \tag{33b}$()

View in Article

$ {\rm H}3(\delta): \ \ p(u\widetilde{u}+\widehat{u}\widehat{\widetilde{u}})-q(u\widehat{u}+\widetilde{u}\widehat{\widetilde{u}})+\delta(p^2-q^2) = 0, \tag{33c}$()

View in Article

$ {\rm A}1(\delta): \ \ p(u+\widehat{u})(\widetilde{u}+\widehat{\widetilde{u}})\!-\!q(u+\widetilde{u})(\widehat{u}+\widehat{\widetilde{u}})-\delta^2pq(p-q) \!=\! 0,\tag{33d}$()

View in Article

$ \begin{split}{\rm A}2: \ \ p(1\, & -q^2)(u\widetilde{u}+\widehat{u}\widehat{\widetilde{u}})-q(1-p^2)(u\widehat{u}+\widetilde{u}\widehat{\widetilde{u}})\\ & -(p^2-q^2)(1+u\widetilde{u}\widehat{u}\widehat{\widetilde{u}}) = 0,\\[-10pt]\end{split}\tag{33e} $()

View in Article

$ \begin{split}{\rm Q}1(\delta): \ \ p(u\, &-\widehat{u})(\widetilde{u}-\widehat{\widetilde{u}})-q(u-\widetilde{u})(\widehat{u}-\widehat{\widetilde{u}})\\ &+\delta^2pq(p-q) = 0,\end{split} \tag{33f}$()

View in Article

$ \begin{split} {\rm Q}2: \ \ & p(u-\widehat{u})(\widetilde{u}-\widehat{\widetilde{u}})-q(u-\widetilde{u})(\widehat{u}-\widehat{\widetilde{u}}) \\ +\, &pq(p-q)(u+\widetilde{u}+\widehat{u}+\widehat{\widetilde{u}}-p^2+pq-q^2) = 0,\end{split} \tag{33g}$()

View in Article

$ \begin{split}{\rm Q}3(\delta):\ \ \, & p(1-q^2)(u\widehat{u}+\widetilde{u}\widehat{\widetilde{u}})-q(1-p^2)(u\widetilde{u}+\widehat{u}\widehat{\widetilde{u}}) \\ -\, &(p^2\!-\!q^2)\left(\widetilde{u}\widehat{u}\!+\! u\widehat{\widetilde{u}}\!+\!\frac{\delta^2(1\! - \!p^2)(1\!-\!q^2)}{4pq}\right) \!=\! 0,\end{split}\tag{33h}$()

View in Article

$ \begin{split}{\rm Q}4: \ \ &{\rm{sn}}(p)(u\widetilde{u}+\widehat{u}\widehat{\widetilde{u}})-{\rm{sn}}(q)(u\widehat{u}+\widetilde{u}\widehat{\widetilde{u}})\\-\,&{\rm{sn}}(p-q)(\widetilde{u}\widehat{u}+u\widehat{\widetilde{u}} ) \\ +\,&{\rm{sn}}(p){\rm{sn}}(q){\rm{sn}}(p-q)(1+k^2u\widetilde{u}\widehat{u}\widehat{\widetilde{u}}) = 0, \end{split} \tag{33i}$()

View in Article

$ \begin{split} &\frac{P-Q}{x_{11}-x_{20}}-\frac{P-Q}{x_{02}-x_{11}}\\ =\, & (x_{00}-x_{21})(x_{10}-x_{01})\\ & -(x_{01}-x_{22})(x_{21}-x_{12}),\end{split}$(34)

View in Article

$ {\widetilde{y}} - x{\widetilde{x}}+z = 0,\; \; {\widehat{y}} - x\widehat{x}+z = 0, \tag{35a}$()

View in Article

$ y - x\widehat{\widetilde{x}}+\widehat{\widetilde{z}}-\frac{P-Q}{\widetilde{x}-\widehat{x}} = 0. \tag{35b}$()

View in Article

$ [{\rm B}-2]:\; \; \widetilde{y} = x \widetilde{x}-z, \; \; \widehat{y} = x \widehat{x}-z, \tag{36a}$()

View in Article

$ y = x \widehat{ \widetilde{x}}- \widehat{ \widetilde{z}} +b_0( \widehat{ \widetilde{x}}-x)+b_1+\frac{P-Q}{ \widetilde{x}- \widehat{x}},\tag{36b}$()

View in Article

$ [{\rm A}-2]:\; \;\widetilde{y} = z \widetilde{x}-x, \; \; \widehat{y} = z \widehat{x}-x, \tag{37a}$()

View in Article

$ y = x \widehat{ \widetilde{z}}-b_0 x+\frac{P \widetilde{x}-Q \widehat{x}}{ \widehat{z}- \widetilde{z}},\tag{37b}$()

View in Article

$ [{\rm C}-3]:\; \; {\widetilde{y}} \,z = {\widetilde{x}} - x,\; \; {\widehat{y}} \,z = {\widehat{x}} - x, \tag{38a}$()

View in Article

$ \widehat{\widetilde{z}}\,y = b_0\,x + b_1 + z \frac{P\,{\widetilde{y}}\,{\widehat{z}}-Q\,{\widehat{y}}\,{\widetilde{z}}}{{\widetilde{z}}-{\widehat{z}}},\tag{38b} $()

View in Article

${\rm B}1(u,\widetilde u,{\widehat{u }},\widehat{\widetilde u};p,q) = p(u {\widehat{\widetilde{u }}} -\widetilde{u} \widehat{u})-q( u\widetilde u{\widehat{u }}{\widehat{\widetilde{u }}} -1) = 0, $(39)

View in Article

$ {\rm B}2(u,\widetilde u,{\widehat{u }},\widehat{\widetilde u};p,q) = p({\widehat{u }} {\widehat{\widetilde{u }}} -u \widetilde{u})- q( \widetilde u \,{\widehat{\widetilde{u }}}- u{\widehat{u }}) = 0. $(40)

View in Article

$ \begin{split} & {{\text{底}}: \;\;{\rm B}1(u,\widetilde u,{\widehat{u }},\widehat{\widetilde u};p,q) = 0,}\\&{{\text{顶}}:\;\;{\rm B}1({\overline{u}},{{\widetilde{\overline{u}}}}, {{\widehat{\overline{u}}}}, {\widehat{{\widetilde{\overline{u}}}}};p,q) = 0,}\\& {{\text{左}}:\;\; {\rm B}1(u,\widetilde u,{\overline{u}}, {{\widetilde{\overline{u}}}};p,r) = 0,}\\&{{\text{右}}: \;\;{\rm B}1({\widehat{u }},\widehat{\widetilde u},{{\widehat{\overline{u}}}}, {\widehat{{\widetilde{\overline{u}}}}};p,r) = 0,}\\& {{\text{后}}: \;\;{\rm B}2(u,{\widehat{u }},{\overline{u}}, {{\widehat{\overline{u}}}};q,r) = 0,}\\&{{\text{前}}: \;\;{\rm B}2(\widetilde u,\widehat{\widetilde u}, {{\widetilde{\overline{u}}}}, {\widehat{{\widetilde{\overline{u}}}}};q,r) = 0.} \end{split}$(41)

View in Article

$ u\widehat{\widetilde{{\overline{u}}}}-\widetilde u{\widehat{\overline{u}}}+ {\widehat{u }}{\widetilde{\overline{u}}} -{\overline{u}} {\widehat{\widetilde{u }}} = 0, \tag{42a}$()

View in Article

$ \frac{(\widetilde u-{\overline{u}})({\widehat{u }}-\widehat{\widetilde{{\overline{u}}}})}{({\overline{u}}-{\widehat{u }})(\widehat{\widetilde{{\overline{u}}}}-\widetilde u)} = \frac{(u-{\widetilde{\overline{u}}})({\widehat{\widetilde{u }}}-{\widehat{\overline{u}}})}{({\widetilde{\overline{u}}}-{\widehat{\widetilde{u }}})({\widehat{\overline{u}}}-u)} . \tag{42b}$()

View in Article

$ {\rm i})\; \; \; \; \; {\widehat{\widetilde{u }}}{\overline{u}} - {\widehat{\overline{u}}} \widetilde u + {\widetilde{\overline{u}}} {\widehat{u }} = 0,\tag{43a}$()

View in Article

$ {\rm ii})\; \; \; \; \frac{({\widehat{\widetilde{u }}}-{\widehat{u }})({\widehat{\overline{u}}}-{\overline{u}})({\widetilde{\overline{u}}}-\widetilde u)}{({\widehat{\widetilde{u }}} - \widetilde u)({\widehat{\overline{u}}}-{\widehat{u }})({\widetilde{\overline{u}}}-{\overline{u}})} = 1, \tag{43b}$()

View in Article

$ {\rm iii})\; \; \; ({\widehat{\widetilde{u }}}-{\widehat{\overline{u}}}){\widehat{u }} + ({\widehat{\overline{u}}}- {\widetilde{\overline{u}}}){\overline{u}} + ({\widetilde{\overline{u}}}-{\widehat{\widetilde{u }}}) \widetilde u = 0, \tag{43c}$()

View in Article

$ {\rm iv}) \; \; \; \frac{({\widehat{\widetilde{u }}}-{\widehat{\overline{u}}})}{{\widehat{u }}} + \frac{({\widehat{\overline{u}}}- {\widetilde{\overline{u}}})}{{\overline{u}}} + \frac{({\widetilde{\overline{u}}}-{\widehat{\widetilde{u }}})}{ \widetilde u} = 0, \tag{43d}$()

View in Article

$ {\rm v}) \; \; \; \; \frac{({\widehat{\overline{u}}}-{\widetilde{\overline{u}}})}{{\overline{u}}} = {\widehat{\widetilde{u }}} \left( \frac{1}{\widetilde u} - \frac{1}{ {\widehat{u }}}\right). \tag{43e}$()

View in Article

$ { Q}(u,\widetilde u,{\widehat{u }},\widehat{\widetilde u};p,q) = 0, \tag{44a}$()

View in Article

$ { Q}({\overline{u}},{{\widetilde{\overline{u}}}},{\widehat{\overline{u}}},\widehat{\widetilde{{\overline{u}}}};p,q) = 0.\tag{44b}$()

View in Article

$ { Q}(u,\widetilde u,{\overline{u}},{\widetilde{\overline{u}}};p,r) = 0,\tag{45a}$()

View in Article

$ { Q}(u,{\overline{u}}, {\widehat{u }},{\widehat{\overline{u}}};r,q) = 0.\tag{45b}$()

View in Article

$ p(u {\widetilde{\overline{u}}} -\widetilde{u} \overline{u})-r( u\widetilde u{\overline{u}}{\widetilde{\overline{u}}} -1) = 0, \tag{46a}$()

View in Article

$ r({\widehat{u }} {\widehat{\overline{u}}} -u \overline{u})- q( {\overline{u}} \,{\widehat{\overline{u}}}- u{\widehat{u }}) = 0, \tag{46b}$()

View in Article

${\overline{u}} = \frac{v}{\epsilon}+\frac{\delta^2}{4\epsilon^2}, $(47)

View in Article

$ p(v-\widehat{v})(\widetilde{v}-\widehat{\widetilde{v}})-q(v-\widetilde{v})(\widehat{v}-\widehat{\widetilde{v}})+\delta^2 pq(p-q) = 0, $()

View in Article

$ \delta(u-\widetilde u)(v-\widetilde v) = -p[\delta^2(u+\widetilde u)-2 v\widetilde v]+p^2\delta (v+\widetilde v+p\delta)],\tag{48a}$()

View in Article

$ \delta(u-{\widehat{u }})(v-{\widehat{v}}) = -q[\delta^2(u+{\widehat{u }})-2 v{\widehat{v}}]+q^2\delta (v+{\widehat{v}}+q\delta)],\tag{48b}$()

View in Article

$ {\widetilde{\overline{u}}} = \frac{p-r}{{\overline{u}}-\widetilde u}+u,\; \; {\widehat{\overline{u}}} = \frac{r-q}{{\widehat{u }}-{\overline{u}}}+u. $(49)

View in Article

$\begin{split} & \frac{\widetilde{g}}{{\widetilde{f}}} = \frac{ug+(p-r-u\widetilde u)f}{g-\widetilde u f},\\ & \frac{\widehat{g}}{{\widehat{f}}} = \frac{ug+(q-r-u {\widehat{u }}) f}{g-{\widehat{u }} f}. \end{split}$(50)

View in Article

$ \widetilde{{ {\varPhi}}} = \gamma_1 { M}{ {\varPhi}},\; \; \; \widehat{{\rm {\varPhi}}} = \gamma_2 { {N\varPhi}}, \tag{51a}$()

View in Article

$ { M} = \left(\!\!\!\begin{array}{cc} u & p-r-u\widetilde u\\ 1 & -\widetilde u \end{array}\!\!\!\right),\; \; \; { N} = \left(\!\!\!\begin{array}{cc} u & q-r-u {\widehat{u }}\\ 1 & -{\widehat{u }} \end{array}\!\!\!\right),\tag{51b} $()

View in Article

$ {\widehat{ M}} { N} = {\widetilde{ N}} { M}, $(52)

View in Article

$ \widetilde{\widetilde{\phi}}_2 = (u-\widetilde{\widetilde{u}}) \widetilde{\phi}_{2}-(p-r)\phi_{2}, $(53)

View in Article

$ \widetilde{{ {\varPhi}}} = \gamma_1 { M}{ {\varPhi}},\; \; \; \widehat{{ {\varPhi}}} = \gamma_2 { N}{ {\varPhi}}, \tag{54a}$()

View in Article

$\begin{split} & { M} = \left(\begin{array}{cc} -\partial_{{\widehat{u }}}Q& -Q\\ \partial_{{\widehat{\widetilde{u }}}}\partial_{{\widehat{u }}}Q& \partial_{{\widehat{\widetilde{u }}}}Q \end{array} \right)_{{\widehat{u }} = {\widehat{\widetilde{u }}} = 0,\; q = r}, \\&{ N} = \left(\begin{array}{cc} -\partial_{\widetilde u}Q& -Q\\ \partial_{{\widehat{\widetilde{u }}}}\partial_{\widetilde u}Q& \partial_{{\widehat{\widetilde{u }}}}Q \end{array} \right)_{\widetilde u = {\widehat{\widetilde{u }}} = 0,\; p = r},\end{split}\tag{54b}$()

View in Article

$ \widetilde { {\varPhi}} = \frac{-1}{\sqrt{u\widetilde u}}\left(\begin{array}{lr}-p \widetilde u & r\\ ru\widetilde u & -pu \end{array}\right){ {\varPhi}}, \tag{55a}$()

View in Article

$ \widehat{{ {\varPhi}} } =\frac{1}{\sqrt{u{\widehat{u }}}}\left(\begin{array}{lr} -r u & q u {\widehat{u }}\\ q & -r {\widehat{u }} \end{array}\right){ {\varPhi}}. \tag{55b}$()

View in Article

$ a^2 = -p,\; \; \; b^2 = -q, $(56)

View in Article

$ u_0 = a n +b m +\lambda, $(57)

View in Article

$ (u-\widetilde{\overline{u}})(\widetilde{u}-\overline{u}) = -a^2+k^2,\tag{58a}$()

View in Article

$ (u-{\widehat{\overline{u}}})(\overline{u}-\widehat{u}) = -k^2+b^2. \tag{58b}$()

View in Article

$ \overline{u} = \overline{u}_{0}+v, $(59)

View in Article

$ \overline{u}_{0} = a n +b m +k+\lambda, $(60)

View in Article

$ \widetilde{v} = \frac{Ev}{v+F},\; \; \; \widehat{v} = \frac{Gv}{v+H}, $(61)

View in Article

$\begin{split} & E = -(a+k),\; \; F = -(a-k),\\ & G = -(b +k),\; \; H = -(b-k).\end{split}$()

View in Article

$ \widetilde{ {\varPhi}} = \left(\begin{array}{cc} E & 0\\ 1 & F \end{array} \right){ {\varPhi}},\; \; \; \widehat{{ {\varPhi}}} = \left(\begin{array}{cc} G & 0\\ 1 & H \end{array} \right){ {\varPhi}}. $(62)

View in Article

$ f_{n,m} = E^n f_{0,m},\; \; \; g_{n,m} = \frac{E^n-F^n}{-2k}f_{0,m}+F^n g_{0,m}, $()

View in Article

$ f_{n,m} = G^m f_{n,0},\; \; \; g_{n,m} = \frac{G^m-H^m}{-2k}f_{n,0}+ H^m g_{n,0}. $()

View in Article

$ {\varPhi}_{n,m} = \left(\begin{array}{cc} E^nG^m & 0\\ \dfrac{E^nG^m-F^nH^m}{-2k} & F^nH^m \end{array} \right){ {\varPhi}}_{0,0}. $(63)

View in Article

$ \rho_{n,m}\! =\! \biggl(\frac{E}{F})^n \! \biggl(\frac{G}{H})^m \rho_{0,0} \!=\! \biggl(\frac{a +k}{a -k})^n \!\biggl(\frac{b + k}{b-k})^m \rho_{0,0}, $(64)

View in Article

$ v_{n,m} = \frac{v_{0,0}\rho_{n,m}/\rho_{0,0} } {1+\dfrac{v_{0,0}}{2k} - \dfrac{v_{0,0}}{2k}\rho_{n,m}/\rho_{0,0}}. $(65)

View in Article

$ v_{n,m} = \frac{-2k \rho_{n,m}}{1+\rho_{n,m}}. $(66)

View in Article

$ u_{n,m}^{1SS} = \overline{u}_{0}+v_{n,m} = an + bm + \lambda +\frac{k(1- \rho_{n,m})}{1+\rho_{n,m}}. $(67)

View in Article

$ { Q}(u,\widetilde u, u,\widetilde u;p,r) = 0,\tag{68a}$()

View in Article

$ { Q}(u, u, {\widehat{u }},{\widehat{u }};r,q) = 0. \tag{68b}$()

View in Article

$ (\widetilde u-u)^2 = r-p,\quad ({\widehat{u }}-u)^2 = r-q. $()

View in Article

$ u = an+bm+\gamma,\; \; a^2 = r-p, \; \; b^2 = r-q, $()

View in Article

$ { Q}(u,\widetilde u, T(u), T(\widetilde u);p,r) = 0, \tag{69a}$()

View in Article

$ { Q}(u, T(u), {\widehat{u }},T({\widehat{u }});r,q) = 0. \tag{69b}$()

View in Article

$\begin{split} & r(u-\widetilde u)^2 = p(c^2+\delta^2r(p-r)),\\ & r(u-{\widehat{u }})^2 = q(c^2+\delta^2r(q-r)). \end{split}$(70)

View in Article

$\begin{split} & p = \frac{c^2/r-\delta^2 r}{a^2-\delta^2},\quad q = \frac{c^2/r-\delta^2 r}{b^2-\delta^2},\\ & \alpha: = pa,\quad \beta: = qb, \end{split}$(71)

View in Article

$ u_0 = \alpha n+\beta m+\lambda, $()

View in Article

$\begin{split} & 4pu\widetilde u +r(u-\widetilde u)^2 = \delta^2pr(p-r),\\ & 4q u{\widehat{u }}+ r(u-{\widehat{u }})^2 = \delta^2r(q-r). \end{split}$(72)

View in Article

$ p = \dfrac{1}{2} r(1- \cosh(\alpha')) = -\dfrac{1}{4}r(1-\alpha)^2/\alpha, $(73)

View in Article

$ q = \dfrac{1}{2} r(1- \cosh(\beta')) = -\dfrac{1}{4}r(1-\beta)^2/\beta, $(74)

View in Article

$ u_0 = A \alpha^n \beta^m +B \alpha^{-n}\beta^{-m},\quad AB = \delta^2 r^2/16. $(75)

View in Article

$ \psi =\prod\limits_{i}{{{(1-{{p}_{i}}k)}^{{{n}_{i}}}}} $()

View in Article

Da-Jun Zhang. Discrete integrable systems: Multidimensional consistency[J]. Acta Physica Sinica, 2020, 69(1): 010202-1
Download Citation