• High Power Laser and Particle Beams
  • Vol. 35, Issue 1, 012007 (2023)
Bo Zhang, Zhimeng Zhang, and Weimin Zhou
Author Affiliations
  • Laser Fusion Research Center, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202335.220204 Cite this Article
    Bo Zhang, Zhimeng Zhang, Weimin Zhou. Comparison of different improvements to mainstream model of nonlinear Compton scattering[J]. High Power Laser and Particle Beams, 2023, 35(1): 012007 Copy Citation Text show less
    References

    [1] Danson C N, Brummitt P A, Clarke R J, et al. Vulcan Petawatt—an ultra-high-intensity interaction facility[J]. Nuclear Fusion, 44, S239-S246(2004).

    [2] Weber S, Bechet S, Borneis S, et al. P3: An installation for high-energy density plasma physics and ultra-high intensity laser-matter interaction at ELI-Beamlines[J]. Matter and Radiation at Extremes, 2, 149-176(2017).

    [3] Guo Zhen, Yu Lianghong, Wang Jianye, et al. Improvement of the focusing ability by double deformable mirrors for 10-PW-level Ti: sapphire chirped pulse amplification laser system[J]. Optics Express, 26, 26776-26786(2018).

    [4] Zou J P, Le Blanc C, Papadopoulos D N, et al. Design and current progress of the Apollon 10 PW project[J]. High Power Laser Science and Engineering, 3, e2(2015).

    [5] Gales S, Tanaka K A, Balabanski D L, et al. The extreme light infrastructure nuclear physics (ELI-NP) facility: new horizons in physics with 10 PW ultra-intense lasers and 20 MeV brilliant gamma beams[J]. Reports on Progress in Physics, 81, 094301(2018).

    [6] Bromage J, Bahk S W, Begishev I A, et al. Technology development for ultraintense all-OPCPA systems[J]. High Power Laser Science and Engineering, 7, e4(2019).

    [7] Cartlidge E. The light fantastic[J]. Science, 359, 382-385(2018).

    [8] Tiwari G, Gaul E, Martinez M, et al. Beam distortion effects upon focusing an ultrashort petawatt laser pulse to greater than 1022W/cm2[J]. Optics Letters, 44, 2764-2767(2019).

    [9] Zeng Xiaoming, Zhou Kainan, Zuo Yanlei, et al. Multi-petawatt laser facility fully based on optical parametric chirped pulse amplification[J]. Optics Letters, 42, 2014-2017(2017).

    [10] Yanovsky V, Chvykov V, Kalinchenko G, et al. Ultra-high intensity-300-TW laser at 0.1 Hz repetition rate[J]. Optics Express, 16, 2109-2114(2008).

    [11] Pirozhkov A S, Fukuda Y, Nishiuchi M, et al. Approaching the diffraction-limited, bandwidth-limited petawatt[J]. Optics Express, 25, 20486-20501(2017).

    [12] Yoon J W, Jeon C, Shin J, et al. Achieving the laser intensity of 5.5×1022W/cm2 with a wavefront-corrected multi-PW laser[J]. Optics Express, 27, 20412-20420(2019).

    [13] Yoon J W, Yoon J W, Kim Y G, et al. Realization of laser intensity over 1023W/cm2[J]. Optica, 8, 630-635(2021).

    [14] Danson C N, Haefner C, Bromage J, et al. Petawatt and exawatt class lasers worldwide[J]. High Power Laser Science and Engineering, 7, e54(2019).

    [15] Jackson J D. Classical electrodynamics[M]. New Yk: Wiley Press, 1975.

    [16] Lau L D, Lifshitz E M. The classical they of fields[M]. Oxfd: Pergamon Press, 1975.

    [17] Schwinger J. On gauge invariance and vacuum polarization[J]. Physical Review, 82, 664-679(1951).

    [18] Klein J J, Nigam B P. Birefringence of the vacuum[J]. Physical Review, 135, B1279-B1280(1964).

    [19] Adler S L, Bahcall J N, Callan C G, et al. Photon splitting in a strong magnetic field[J]. Physical Review Letters, 25, 1061-1065(1970).

    [20] Unruh W G. Notes on black-hole evaporation[J]. Physical Review D, 14, 870-892(1976).

    [21] Zhang Bo, Zhang Zhimeng, Hong Wei, et al. Vacuum radiation induced by time dependent electric field[J]. Physics Letters B, 767, 431-436(2017).

    [22] Marklund M, Shukla P K. Nonlinear collective effects in photon-photon and photon-plasma interactions[J]. Reviews of Modern Physics, 78, 591-640(2006).

    [23] Ehlotzky F, Krajewska K, Kamiński J Z. Fundamental processes of quantum electrodynamics in laser fields of relativistic power[J]. Reports on Progress in Physics, 72, 046401(2009).

    [24] Di Piazza A, Müller C, Hatsagortsyan K Z, et al. Extremely high-intensity laser interactions with fundamental quantum systems[J]. Reviews of Modern Physics, 84, 1177-1228(2012).

    [25] Mourou G, Tajima T. Summary of the IZEST science and aspiration[J]. The European Physical Journal Special Topics, 223, 979-984(2014).

    [26] Cole J M, Behm K T, Gerstmayr E, et al. Experimental evidence of radiation reaction in the collision of a high-intensity laser pulse with a laser-wakefield accelerated electron beam[J]. Physical Review X, 8, 011020(2018).

    [27] Poder K, Tamburini M, Sarri G, et al. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser[J]. Physical Review X, 8, 031004(2018).

    [28] Wistisen T N, Di Piazza A, Knudsen H V, et al. Experimental evidence of quantum radiation reaction in aligned crystals[J]. Nature Communications, 9, 795(2018).

    [29] Wistisen T N, Di Piazza A, Nielsen C F, et al. Quantum radiation reaction in aligned crystals beyond the local constant field approximation[J]. Physical Review Research, 1, 033014(2019).

    [30] Nikishov A I, Ritus V I. Quantum processes in the field of a plane electromagnetic wave and in a constant field. Part II[J]. Zh. Eksp. Teor. Fiz, 46, 776(1964).

    [31] Nikishov A I, Ritus V I. Pair production by a photon and photon emission by an electron in the field of an intense electromagnetic wave and in a constant field[J]. Soviet Physics JETP, 25, 1135-1142(1967).

    [32] Ritus V I. Quantum effects of the interaction of elementary particles with an intense electromagnetic field[J]. Journal of Soviet Laser Research, 6, 497-617(1985).

    [33] Ji Liangliang, Pukhov A, Kostyukov I Y, et al. Radiation-reaction trapping of electrons in extreme laser fields[J]. Physical Review Letters, 112, 145003(2014).

    [34] Gonoskov A, Bashinov A, Gonoskov I, et al. Anomalous radiative trapping in laser fields of extreme intensity[J]. Physical Review Letters, 113, 014801(2014).

    [35] Duclous R, Kirk J G, Bell A R. Monte Carlo calculations of pair production in high-intensity laser–plasma interactions[J]. Plasma Physics and Controlled Fusion, 53, 015009(2011).

    [36] Arber T D, Bennett K, Brady C S, et al. Contemporary particle-in-cell approach to laser-plasma modelling[J]. Plasma Physics and Controlled Fusion, 57, 113001(2015).

    [37] Ridgers C P, Kirk J G, Duclous R, et al. Modelling gamma-ray photon emission and pair production in high-intensity laser–matter interactions[J]. Journal of Computational Physics, 260, 273-285(2014).

    [38] Zhang Bo, Zhang Zhimeng, Deng Zhigang, et al. Effects of involved laser photons on radiation and electron-positron pair production in one coherence interval in ultra intense lasers[J]. Scientific Reports, 8, 16862(2018).

    [39] Zhang Bo, Zhang Zhimeng, Deng Zhigang, et al. Quantum mechanisms of electron and positron acceleration through nonlinear Compton scatterings and nonlinear Breit-Wheeler processes in coherent photon dominated regime[J]. Scientific Reports, 9, 18876(2019).

    [40] Li Yanfei, Shaisultanov R, Hatsagortsyan K Z, et al. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse[J]. Physical Review Letters, 122, 154801(2019).

    [41] Li Yanfei, Shaisultanov R, Chen Y Y, et al. Polarized ultrashort brilliant multi-GeV γ rays via single-shot laser-electron interaction[J]. Physical Review Letters, 124, 014801(2020).

    [42] Li Yanfei, Chen Yueyue, Wang Weimin, et al. Production of highly polarized positron beams via helicity transfer from polarized electrons in a strong laser field[J]. Physical Review Letters, 125, 044802(2020).

    [43] McMaster W H. Matrix representation of polarization[J]. Reviews of Modern Physics, 33, 8-27(1961).

    [44] Baier V N, Katkov V M, Strakhovenko V M. Quantum radiation theory in inhomogeneous external fields[J]. Nuclear Physics B, 328, 387-405(1989).

    [45] Dinu V, Harvey C, Ilderton A, et al. Quantum radiation reaction: from interference to incoherence[J]. Physical Review Letters, 116, 044801(2016).

    [46] Di Piazza A, Tamburini M, Meuren S, et al. Implementing nonlinear Compton scattering beyond the local-constant-field approximation[J]. Physical Review A, 98, 012134(2018).

    Bo Zhang, Zhimeng Zhang, Weimin Zhou. Comparison of different improvements to mainstream model of nonlinear Compton scattering[J]. High Power Laser and Particle Beams, 2023, 35(1): 012007
    Download Citation