• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823018 (2021)
Linsen Chen*, Wen Qiao**, Yan Ye, Yanhua Liu, and Donglin Pu
Author Affiliations
  • School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu 215006, China
  • show less
    DOI: 10.3788/AOS202141.0823018 Cite this Article Set citation alerts
    Linsen Chen, Wen Qiao, Yan Ye, Yanhua Liu, Donglin Pu. Critical Technologies of Micro-Nano-Manufacturing and Its Applications for Flexible Optoelectronic Devices[J]. Acta Optica Sinica, 2021, 41(8): 0823018 Copy Citation Text show less
    References

    [1] Wu S L, Gu Y, Ye Y et al. Omnidirectional broadband metasurface absorber operating in visible to near-infrared regime[J]. Optics Express, 26, 21479-21489(2018).

    [2] Wu S L, Ye Y, Luo M H et al. Polarization-dependent wide-angle color filter incorporating meta-dielectric nanostructures[J]. Applied Optics, 57, 3674-3678(2018). http://www.ncbi.nlm.nih.gov/pubmed/29791332

    [3] Wu S L, Ye Y, Gu Y et al. Transmitted plasmonic colors with different overlays utilizing the Fano-resonance[J]. Optics Express, 27, 9570-9577(2019).

    [4] Wu S L, Ye Y, Luo M H et al. Ultrathin omnidirectional, broadband visible absorbers[J]. Journal of the Optical Society of America B, 35, 1825-1828(2018).

    [5] Wu S L, Ye Y, Chen L S. A broadband omnidirectional absorber incorporating plasmonic metasurfaces[J]. Journal of Materials Chemistry C, 6, 11593-11597(2018).

    [6] Wan W Q, Qiao W, Huang W B et al. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views[J]. Optics Express, 24, 6203-6212(2016).

    [7] Wan W Q, Qiao W, Pu D L et al. Holographic sampling display based on metagratings[J]. iScience, 23, 100773-100792(2020).

    [8] Wan W Q, Qiao W, Huang W B et al. Multiview holographic 3D dynamic display by combining a nano-grating patterned phase plate and LCD[J]. Optics Express, 25, 1114-1122(2017).

    [9] Zhang Y L, Yi D H, Qiao W et al. Directional backlight module based on pixelated nano-gratings[J]. Optics Communications, 459, 125034-125040(2020).

    [10] Park B S, Hyung K H, Oh G J et al. Dynamic change in color filter layers during the baking process by multi-speckle diffusing wave spectroscopy[J]. Chemical Engineering & Technology, 40, 2230-2238(2017).

    [11] Briñez-de León J C, Restrepo-Martínez A, Branch-Bedoya J W. Computational analysis of Bayer colour filter arrays and demosaicking algorithms in digital photoelasticity[J]. Optics and Lasers in Engineering, 122, 195-208(2019).

    [12] Huang Y, Zhao Z Q, Wu B et al. Visual object tracking with discriminative correlation filtering and hybrid color feature[J]. Multimedia Tools and Applications, 78, 34725-34744(2019).

    [13] Sun Y, Zhang C, Yang Y L et al. Improving the color gamut of a liquid-crystal display by using a bandpass filter[J]. Current Optics and Photonics, 3, 590-596(2019).

    [14] Williams C. Gordon G S D, Wilkinson T D, et al. Grayscale-to-color: scalable fabrication of custom multispectral filter arrays[J]. ACS Photonics, 6, 3132-3141(2019).

    [15] Arat K T, Zonnevylle A C. Ketelaars W S M M, et al. Electron beam lithography on curved or tilted surfaces: simulations and experiments[J]. Journal of Vacuum Science & Technology B, 37, 051604(2019).

    [16] Dement D B, Quan M K, Ferry V E. Nanoscale patterning of colloidal nanocrystal films for nanophotonic applications using direct write electron beam lithography[J]. ACS Applied Materials & Interfaces, 11, 14970-14979(2019).

    [17] Mahmoodian M, Hajihoseini H, Mohajerzadeh S et al. Nano patterning and fabrication of single polypyrrole nanowires by electron beam lithography[J]. Synthetic Metals, 249, 14-24(2019).

    [18] Rahmasari L, Abdullah M F. Md Zain A R, et al. Silicon nanohole arrays fabricated by electron beam lithography and reactive ion etching[J]. Sains Malaysiana, 48, 1157-1161(2019).

    [19] Wang Y Y, Pan J A, Wu H Q et al. Direct wavelength-selective optical and electron-beam lithography of functional inorganic nanomaterials[J]. ACS Nano, 13, 13917-13931(2019).

    [20] Guang Y, Peng Y, Yan Z R et al. Electron beam lithography of magnetic skyrmions[J]. Advanced Materials, 32, 2003003(2020).

    [21] Kim H S, Son B H, Kim Y C et al. Direct laser writing lithography using a negative-tone electron-beam resist[J]. Optical Materials Express, 10, 2813-2818(2020).

    [22] Wang X D, Xu J, Quan X L et al. Fast fabrication of silicon nanopillar array using electron beam lithography with two-layer exposure method[J]. Microelectronic Engineering, 227, 111311-111316(2020).

    [23] Yan X L. Overview of ink-jet printing technology[J]. Optoelectronic Technology, 38, 217-221(2018).

    [24] Zheng H[J]. Application of printed electronics technology in OLED display devices Electronic Technology & Software Engineering, 2019, 91-92.

    [25] Gao W N, Bi Y, Liu X H et al. Development strategy of key materials for novel display in China[J]. Strategic Study of CAE, 22, 44-50(2020).

    [26] Chen H N, Economic Guide. 21):, 91, 89(2017).

    [27] Zhang G H[J]. Study on ultra-thin liquid crystal display technology in wide color domain Electronic Test, 2019, 55-56.

    [28] Kara O K, Yardımcı B N, Livanelioglu A et al. Examination of touch-coordinate errors of adolescents with unilateral spastic cerebral palsy at an aiming-tapping task[J]. Journal of Back and Musculoskeletal Rehabilitation, 33, 81-89(2020).

    [29] He Y F, Song X L, Gu H Y et al. Research on the application of copper material in new touch technology and touch panel device[J]. Micro/Nano Electronics and Intelligent Manufacturing, 2, 120-126(2020).

    [30] Xu S C, Sun Y R, Zhao K D et al. Gesture data extraction technology based on distance change[J]. Information Technology, 44, 1-4, 9(2020).

    [31] Yan K L, Yu X[J]. Overview of terminal function technology based on gesture action control Digital Communication World, 2020, 70.

    [32] Yan Y, Chen L S, Lou Y M et al. -11-06[P]. system with continuously adjustable structured light illumination: CN201380081848.5.(2018).

    [33] Yan Y, Xu F C, Wei G J, interference lithography system: CN201610004778.9[P] et al. -02-08(2017).

    [34] Jones F, optical lithography method: US4717644[P]. -01-05(1988).

    [35] Ye Y, Xu F C, Wei G J, interference lithography system: US10054859[P] et al. -08-21(2018).

    [36] Banerji S, Sensale-Rodriguez B. A computational design framework for efficient, fabrication error-tolerant, planar THz diffractive optical elements[J]. Scientific Reports, 9, 5801-5810(2019).

    [37] Hsu W F, Lin S T, Lin J F. Optimization of diffractive optical elements with millions of pixels using progressive error reduction algorithm (PERA)[J]. Optics and Lasers in Engineering, 122, 49-58(2019).

    [38] Mi L T, Chen C P, Lu Y F et al. Design of lensless retinal scanning display with diffractive optical element[J]. Optics Express, 27, 20493-20507(2019).

    [39] Miao Y X, Zhao Y S, Ma H P et al. Design of diffractive optical element projector for a pseudorandom dot array by an improved encoding method[J]. Applied Optics, 58, G169-G176(2019).

    [40] Roeder M, Thiele S, Hera D et al. Fabrication of curved diffractive optical elements by means of laser direct writing, electroplating, and injection compression molding[J]. Journal of Manufacturing Processes, 47, 402-409(2019).

    [41] Long L, Guo Z H, Zhong S L. A MEMS accelerometer based on wavelength modulation using an integrated blazed grating[J]. IEEE Sensors Journal, 19, 877-884(2019).

    [42] Mattelin M A, Radosavljevic A, Missinne J et al. Design and fabrication of blazed gratings for a waveguide-type head mounted display[J]. Optics Express, 28, 11175-11190(2020).

    [43] McCoy J A, McEntaffer R L, Miles D M. Extreme ultraviolet and soft X-ray diffraction efficiency of a blazed reflection grating fabricated by thermally activated selective topography equilibration[J]. The Astrophysical Journal Letters, 891, 114(2020).

    [44] Nie Q Y, Xie Y Y, Chang F. MEMS blazed gratings fabricated using anisotropic etching and oxidation sharpening[J]. AIP Advances, 10, 065216(2020).

    [45] Zhu J C, Zhou J K, Shen W M. Design of polarization-independent two-dimensional binary blazed grating[J]. Journal of Infrared and Millimeter Waves, 39, 149-156(2020).

    [46] Zhang F, Yang Q, Bian H et al. Fabrication of chalcogenide glass based hexagonal gapless microlens arrays via combining femtosecond laser assist chemical etching and precision glass molding processes[J]. Materials, 13, 3490(2020).

    [47] Xue L, Pang Y F, Liu W J et al. Fabrication of random microlens array for laser beam homogenization with high efficiency[J]. Micromachines, 11, 338(2020).

    [48] Zhang T Y, Li P, Yu H B et al. Fabrication of flexible microlens arrays for parallel super-resolution imaging[J]. Applied Surface Science, 504, 144375(2020).

    [49] Kim C, Shin D, Koo G et al. Fabrication of an electrowetting liquid microlens array for a focus tunable integral imaging system[J]. Optics Letters, 45, 511-514(2020).

    [50] Mei L Y, Wang G X, Deng J et al. Tunable fabrication of concave microlens arrays by initiative cooling-based water droplet condensation[J]. Soft Matter, 15, 9150-9156(2019).

    [51] Qiao W, Huang W B, Liu Y H et al. Photonics: toward scalable flexible nanomanufacturing for photonic structures and devices[J]. Advanced Materials, 28, 10353-10380(2016).

    [52] You R, Han D D, Liu F M et al. Fabrication of flexible room-temperature NO2 sensors by direct laser writing of In2O3 and graphene oxide composites[J]. Sensors and Actuators B: Chemical, 277, 114-120(2018).

    [53] Schmid M, Thiele S, Herkommer A et al. Three-dimensional direct laser written achromatic axicons and multi-component microlenses[J]. Optics Letters, 43, 5837-5840(2018).

    [54] Mao F, Davis A, Tong Q C et al. Direct laser writing of gold nanostructures: application to data storage and color nanoprinting[J]. Plasmonics, 13, 2285-2291(2018).

    [55] Yu S Y, Schrodj G, Mougin K et al. Direct laser writing of crystallized TiO2 and TiO2/carbon microstructures with tunable conductive properties[J]. Advanced Materials, 30, e1805093(2018).

    [56] Liu F X, Sun S F, Wang D X et al. Research on technology with femtosecond laser direct-writing on PMMA microchannels[J]. Journal of Applied Optics, 39, 442-446(2018).

    [57] Zhang F T, Nie Z G, Qiu J R. Realization of optical modulation in germanium oxide glass by femtosecond laser direct writing[J]. Chinese Journal of Lasers, 45, 1202006(2018).

    [58] Li M K, Xiang X S, Zhou C H et al. Two-dimensional grating fabrication based on ultra-precision laser direct writing system[J]. Acta Optica Sinica, 39, 0905001(2019).

    [59] Liao J N, Wang X D, Zhou X W et al. Femtosecond laser direct writing of copper microelectrodes[J]. Chinese Journal of Lasers, 46, 1002013(2019).

    [60] Lettrichova I, Laurencikova A, Pudis D et al. 2D periodic structures patterned on 3D surfaces by interference lithography for SERS[J]. Applied Surface Science, 461, 171-174(2018).

    [61] Guo X D, Li L, Hu Y W et al. Superlens-enhanced laser interference lithography[J]. Applied Physics Express, 11, 125201-125205(2018).

    [62] Xue C F, Meng X Y, Wu Y Q et al. The wave optical whole process design of the soft X-ray interference lithography beamline at SSRF[J]. Journal of Synchrotron Radiation, 25, 1869-1876(2018).

    [63] Pang Z Y, Tong H, Wu X X et al. Theoretical study of multiexposure zeroth-order waveguide mode interference lithography[J]. Optical and Quantum Electronics, 50, 334-342(2018).

    [64] Kim M, Park C, Je S et al. Real-time compensation of simultaneous errors induced by optical phase difference and substrate motion in scanning beam laser interference lithography system[J]. IEEE/ASME Transactions on Mechatronics, 23, 1491-1500(2018).

    [65] Ye Y, Xu F C, Wei G J et al. Scalable Fourier transform system for instantly structured illumination in lithography[J]. Optics Letters, 42, 1978-1981(2017).

    [66] Lou Y M, Chen L S, Wei G J et al. Method and system of three-dimensional laser printing based on consecutive spatial frequency modulation[J]. Chinese Journal of Lasers, 41, 0209009(2014).

    [67] Yang Y. Continuously variable spatial frequency 3D image lithography technology and application[D]. Suzhou: Soochow University(2016).

    [68] SVG Tech Group. High speed laser graphic direct writing equipment: iGrapher200/iGrapher820.(2020). http://www.svgoptronics.com/index.php?route=product/product&path=4&product_id=19

    [69] SVG Tech Group. Nano pattern lithography equipment: NanoCrystal.(2020). http://www.svgoptronics.com/index.php?route=product/product&path=4&product_id=18

    [70] Huang W B, Wang J, Liu Y J et al. Low-threshold triple-wavelength lasing from a subwavelength triangle microcavity polymer laser fabricated by imaging holography[J]. Organic Electronics, 75, 105319(2019).

    [71] Huang W B, Yu X T, Liu Y H et al. A review of the scalable nano-manufacturing technology for flexible devices[J]. Frontiers of Mechanical Engineering, 12, 99-109(2017).

    [72] Chung C H, Park T, Lee S. Thermal stability data of silver nanowire transparent conducting electrode[J]. Data in Brief, 30, 105422-105425(2020).

    [73] Kim M, Nabeya S, Han S M et al. Selective atomic layer deposition of metals on graphene for transparent conducting electrode application[J]. ACS Applied Materials & Interfaces, 12, 14331-14340(2020).

    [74] Han Y, Chen X, Wei J et al. Efficiency above 12% for 1 cm 2 flexible organic solar cells with Ag/Cu grid transparent conducting electrode[J]. Advanced Science, 6, 1901490-1901500(2019).

    [75] Kim B K, Lee S Y. Development of amorphous SIZO/Ag/amorphous SIZO multilayer for high-performance transparent conducting electrode by controlling Ag layer thickness[J]. Journal of Nanoscience and Nanotechnology, 19, 1755-1758(2019).

    [76] Mardiansyah D, Badloe T, Triyana K et al. Effect of temperature on the oxidation of Cu nanowires and development of an easy to produce, oxidation-resistant transparent conducting electrode using a PEDOT: PSS coating[J]. Scientific Reports, 8, 10639-10647(2018).

    [77] Tugba Camic B, Oytun F, Hasan Aslan M et al. Fabrication of a transparent conducting electrode based on graphene/silver nanowires via layer-by-layer method for organic photovoltaic devices[J]. Journal of Colloid and Interface Science, 505, 79-86(2017).

    [78] Liu Y H, Shen S, Hu J et al. Embedded Ag mesh electrodes for polymer dispersed liquid crystal devices on flexible substrate[J]. Optics Express, 24, 25774-25784(2016).

    [79] Liu Y H, Xu J L, Gao X et al. Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors[J]. Energy & Environmental Science, 10, 2534-2543(2017).

    [80] Shen S, Chen S Y, Zhang D Y et al. High-performance composite Ag-Ni mesh based flexible transparent conductive film as multifunctional devices[J]. Optics Express, 26, 27545-27554(2018).

    [81] Jiang Z Y, Huang W B, Chen L S et al. Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding[J]. Optics Express, 27, 24194-24206(2019).

    [82] Wu S L, Ye Y, Jiang Z Y et al. Broadband metasurface absorbers: large-area, ultrathin metasurface exhibiting strong unpolarized ultrabroadband absorption[J]. Advanced Optical Materials, 7, 1970091(2019).

    [83] Wu S L, Ye Y, Duan H G et al. Large-area, optical variable-color metasurfaces based on pixelated plasmonic nanogratings[J]. Advanced Optical Materials, 7, 1801302(2019).

    [84] Hu F Q, Xue Y, Jian N N et al. Pyrazine-EDOT D-A-D type hybrid polymer for patterned flexible electrochromic devices[J]. Electrochimica Acta, 357, 136859(2020).

    [85] Kim Y, Park C, Im S et al. Design of intrinsically stretchable and highly conductive polymers for fully stretchable electrochromic devices[J]. Scientific Reports, 10, 16488-16499(2020).

    [86] Lin H T, Wu J T, Chen M H et al. Novel electrochemical devices with high contrast ratios and simultaneous electrochromic and electrofluorochromic response capability behaviours[J]. Journal of Materials Chemistry C, 8, 12656-12661(2020).

    [87] Xue Z C, Li Q, Yu M F et al. All-in-one, reversible yellow-green color switching tungsten oxide electrochromic devices[J]. Physics Letters A, 384, 126822-126826(2020).

    [88] Zhang S H, Hu F, Chen S et al. A dual-type electrochromic device based on complementary silica/conducting polymers nanocomposite films for excellent cycling stability[J]. Journal of Electronic Materials, 48, 4797-4805(2019). http://link.springer.com/article/10.1007/s11664-019-07273-9

    [89] Zhao S Q, Liu Y H, Ming Z et al. Highly flexible electrochromic devices enabled by electroplated nickel grid electrodes and multifunctional hydrogels[J]. Optics Express, 27, 29547-29557(2019).

    [90] Lee C K, Park S G, Moon S et al. Viewing zone duplication of multi-projection 3D display system using uniaxial crystal[J]. Optics Express, 24, 8458-8470(2016). http://europepmc.org/abstract/med/27137284

    [91] Sando Y, Barada D, Yatagai T. Optical rotation compensation for a holographic 3D display with a 360 degree horizontal viewing zone[J]. Applied Optics, 55, 8589-8595(2016).

    [92] Wang Q H, Ji C C, Li L et al. Dual-view integral imaging 3D display by using orthogonal polarizer array and polarization switcher[J]. Optics Express, 24, 9-16(2016).

    [93] Yang L, Dong H W, Alelaiwi A et al. See in 3D: state of the art of 3D display technologies[J]. Multimedia Tools and Applications, 75, 17121-17155(2016).

    [94] Sando Y, Barada D, Yatagai T. Full-color holographic 3D display with horizontal full viewing zone by spatiotemporal-division multiplexing[J]. Applied Optics, 57, 7622-7626(2018).

    [95] Zhou F, Hua J Y, Shi J C et al. Pixelated blazed gratings for high brightness multiview holographic 3D display[J]. IEEE Photonics Technology Letters, 32, 283-286(2020).

    [96] Shi J C, Qiao W, Hua J Y et al. Spatial multiplexing holographic combiner for glasses-free augmented reality[J]. Nanophotonics, 9, 3003-3010(2020).

    [97] Zeng S L, Huang Z X, Jiang H et al. From waste to wealth: a lightweight and flexible leather solid waste/polyvinyl alcohol/silver paper for highly efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 12, 52038-52049(2020).

    [98] Rajavel K, Yu X C, Zhu P L et al. Exfoliation and defect control of two-dimensional few-layer MXene Ti3C2Tx for electromagnetic interference shielding coatings[J]. ACS Applied Materials & Interfaces, 12, 49737-49747(2020).

    [99] Wan Y J, Wang X Y, Li X M et al. Ultrathin densified carbon nanotube film with “metal-like” conductivity, superior mechanical strength, and ultrahigh electromagnetic interference shielding effectiveness[J]. ACS Nano, 14, 14134-14145(2020).

    [100] Lee D W, Kim H, Hyeon J S et al. Bidirectional core sandwich structure of reduced graphene oxide and spinnable multiwalled carbon nanotubes for electromagnetic interference shielding effectiveness[J]. ACS Applied Materials & Interfaces, 12, 46883-46891(2020).

    [101] Jiang Z Y, Zhao S Q, Huang W B et al. Embedded flexible and transparent double-layer nickel-mesh for high shielding efficiency[J]. Optics Express, 28, 26531-26542(2020).

    [102] Du J, Liu L, Wu H X et al. N-Doped yolk-shell carbon nanotube composite for enhanced electrochemical performance in a supercapacitor[J]. Nanoscale, 11, 22796-22803(2019).

    [103] Lee J H, Chae J S, Jeong J H et al. An ionic liquid incorporated in a quasi-solid-state electrolyte for high-temperature supercapacitor applications[J]. Chemical Communications, 55, 15081-15084(2019).

    [104] Sun Y, Zhang J J, Sun X N et al. The NH4F-induced morphology control of hierarchical CoO@MnO2 core-shell arrays for high performance supercapacitor electrodes[J]. CrystEngComm, 21, 7468-7475(2019).

    [105] Wang X, He Y P, Guo Z C et al. Enhanced electrochemical supercapacitor performance with a three-dimensional porous boron-doped diamond film[J]. New Journal of Chemistry, 43, 18813-18822(2019).

    [106] Zhang K J, Liu M R, Zhang T Z et al. High-performance supercapacitor energy storage using a carbon material derived from lignin by bacterial activation before carbonization[J]. Journal of Materials Chemistry A, 7, 26838-26848(2019).

    [107] Xu J L, Liu Y H, Gao X et al. Embedded Ag grid electrodes as current collector for ultraflexible transparent solid-state supercapacitor[J]. ACS Applied Materials & Interfaces, 9, 27649-27656(2017).

    [108] Liu Y H, Xu J L, Shen S et al. High-performance, ultra-flexible and transparent embedded metallic mesh electrodes by selective electrodeposition for all-solid-state supercapacitor applications[J]. Journal of Materials Chemistry A, 5, 9032-9041(2017). http://www.researchgate.net/publication/315907860_High-Performance_Ultra-Flexible_and_Transparent_Embedded_Metallic_Mesh_Electrodes_by_Selective_Electrodeposition_for_All-Solid-State_Supercapacitor_Applications

    [109] Xu J L, Liu Y H, Gao X et al. Toward wearable electronics: a lightweight all-solid-state supercapacitor with outstanding transparency, foldability and breathability[J]. Energy Storage Materials, 22, 402-409(2019).

    [110] Liu Y H, Jiang Z Y, Xu J L. Self-standing metallic mesh with MnO2 multiscale microstructures for high-capacity flexible transparent energy storage[J]. ACS Applied Materials & Interfaces, 11, 24047-24056(2019).

    Linsen Chen, Wen Qiao, Yan Ye, Yanhua Liu, Donglin Pu. Critical Technologies of Micro-Nano-Manufacturing and Its Applications for Flexible Optoelectronic Devices[J]. Acta Optica Sinica, 2021, 41(8): 0823018
    Download Citation