• Infrared and Laser Engineering
  • Vol. 50, Issue 6, 20210087 (2021)
Chao Zhang1、2、3, Gengxiu Tang1、2, Zhigang Liu1、2, Liunian Zheng1、2, Youen Jiang1、2, Donghui Zhang1、2、3, and Jianqiang Zhu1、2
Author Affiliations
  • 1Key Laboratory on High Power Laser and Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2National Laboratory on High Power Laser and Physics, Chinese Academy of Engineering Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/IRLA20210087 Cite this Article
    Chao Zhang, Gengxiu Tang, Zhigang Liu, Liunian Zheng, Youen Jiang, Donghui Zhang, Jianqiang Zhu. Research on structure design of optical mount with high stability in laser system[J]. Infrared and Laser Engineering, 2021, 50(6): 20210087 Copy Citation Text show less

    Abstract

    Laser system requires that optical beam has excellent pointing stability after long optical path transmission, which is directly determined by the structural stability of optical mounts. In order to achieve beam pointing stability and alignment, optical mount is often required to have excellent structural stability and adjustability. Due to the existence of clearance fit, the adjustability will lead to instability. Aiming at the instability caused by grease in adjustment screw structure of the mount, a structure improvement design was proposed. Axial slots were machined on the internal thread surface of the nut in the adjustment structure. Combined with the proposed structure, a heat treatment process was further proposed, which can greatly reduce the instability introduced by grease. Change of axial clearance of two adjustment structures were tested. Structure stability of optical mount with slotted adjustment structure was compared with the un-slotted mount before and after heat treatment. The results show that the slotted adjustment structure after heat treatment can greatly improve the stability of optical mount.
    $\left| {\begin{array}{*{20}{c}} x&y&{\textit{z}} \\ 0&{{L}}&{{{\textit{z}}_1}} \\ {{L}}&0&{{\textit{z}}_2} \end{array}} \right| = 0$(1)

    View in Article

    $ \overrightarrow{n}={[{{L\textit{z}}}_{2},{{L\textit{z}}}_{\rm{1}}, {{-L}}^{2}]}^{\rm{T}}$(2)

    View in Article

    $\begin{split} &\\ \left| {\begin{array}{*{20}{c}} x&y&{\textit{z}} \\ 0&{{L}}&{\textit{z}_1 + \Delta {{\textit{z}}_1}} \\ {{L}}&0&{\textit{z}_2 + \Delta {{\textit{z}}_2}} \end{array}} \right| = 0 \end{split}$(3)

    View in Article

    $ {\overrightarrow{n}}_{1}={[{L(\textit{z}}{}_{1}+\Delta {z}_{1}),{L(\textit{z}}{}_{2}+\Delta {\textit{z}}_{2}{)}, {{-L}}^{2}]}^{{{\rm{T}}}}$(4)

    View in Article

    $\cos {\theta _{{\rm{yaw}}}} = \cos {\theta _{{{y - {\rm{rotate}}}}}} = \dfrac{{\left| {\overrightarrow {{n_{{{y\textit{z}}}}}} \cdot \overrightarrow {{n_{{{1y\textit{z}}}}}} } \right|}}{{\left\| {\overrightarrow {{n_{{{y\textit{z}}}}}} } \right\|\cdot \left\| {\overrightarrow {{n_{{{1y\textit{z}}}}}} } \right\|}}$(5)

    View in Article

    $\cos {\theta _{{\rm{pitch}}}} = \cos {\theta _{{{x - {\rm{rotate}}}}}} = \dfrac{{\left| {\overrightarrow {{n_{{{x\textit{z}}}}}} \cdot \overrightarrow {{n_{{{1x\textit{z}}}}}} } \right|}}{{\left\| {\overrightarrow {{n_{{{x\textit{z}}}}}} } \right\|\cdot \left\| {\overrightarrow {{n_{{{1x\textit{z}}}}}} } \right\|}}$(6)

    View in Article

    ${\theta _{{\rm{yaw}}}} \approx \sin {\theta _{{\rm{yaw}}}} = \sqrt {1{\rm{ - co}}{{\rm{s}}^{\rm{2}}}({\theta _{{\rm{yaw}}}})} $(7)

    View in Article

    ${\theta _{{\rm{pitch}}}} \approx \sin {\theta _{{\rm{pitch}}}} = \sqrt {1{\rm{ - co}}{{\rm{s}}^{\rm{2}}}({\theta _{{\rm{pitch}}}})} $(8)

    View in Article

    $\overrightarrow {{n_{{{y\textit{z}}}}}} = {\left( {{{L}}{{{\textit{z}}}_1}, - {{{L}}^2}} \right)^{\rm{T}}}$(9)

    View in Article

    $\overrightarrow {{n_{{{x\textit{z}}}}}} = {\left( {{{L}}{{{\textit{z}}}_2}, - {{{L}}^2}} \right)^{\rm{T}}}$(10)

    View in Article

    $\overrightarrow {{n_{{{1y\textit{z}}}}}} = {\left( {{{L(}}{{{\textit{z}}}_1} + \Delta {{\textit{z}}_1}), - {{{L}}^2}} \right)^{\rm{T}}}$(11)

    View in Article

    $\overrightarrow {{n_{{{1x\textit{z}}}}}} = {\left( {{{L(}}{{\textit{z}}_2} + \Delta {{\textit{z}}_2}), - {{{L}}^2}} \right)^{\rm{T}}}$(12)

    View in Article

    ${\theta _{{\rm{yaw}}}} \approx \dfrac{{{{10}^6}}}{{\sqrt {{{\left( {\dfrac{{{{{\textit{z}}}_2}}}{{{L}}}} \right)}^2} + 1} \times \sqrt {{{\left( {\dfrac{{{{{\textit{z}}}_2}}}{{\Delta {{\textit{z}}_2}}} + 1} \right)}^2} + {{\left( {\dfrac{{{L}}}{{\Delta {{\textit{z}}_2}}}} \right)}^2}} }}$(13)

    View in Article

    ${\theta _{{\rm{pitch}}}} \approx \dfrac{{{{10}^6}}}{{\sqrt {{{\left( {\dfrac{{{{{\textit{z}}}_1}}}{{{L}}}} \right)}^2} + 1} \times \sqrt {{{\left( {\dfrac{{{{{\textit{z}}}_1}}}{{\Delta {{\textit{z}}_1}}} + 1} \right)}^2} + {{\left( {\dfrac{{{L}}}{{\Delta {{\textit{z}}_1}}}} \right)}^2}} }}$(14)

    View in Article

    Chao Zhang, Gengxiu Tang, Zhigang Liu, Liunian Zheng, Youen Jiang, Donghui Zhang, Jianqiang Zhu. Research on structure design of optical mount with high stability in laser system[J]. Infrared and Laser Engineering, 2021, 50(6): 20210087
    Download Citation