• Infrared and Laser Engineering
  • Vol. 49, Issue 12, 20201053 (2020)
Man Jiang, Pengfei Ma, Rongtao Su, Can Li, Jian Wu, Yanxing Ma, and Pu Zhou*
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/IRLA20201053 Cite this Article
    Man Jiang, Pengfei Ma, Rongtao Su, Can Li, Jian Wu, Yanxing Ma, Pu Zhou. Research progress and prospect of spectral beam combining (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201053 Copy Citation Text show less
    References

    [1] L H Enloe, J L Rodda. Laser phase-locked loop. Proc of IEEE, 53, 165-166(1965).

    [2] H L Stover, W H Steier. Locking of laser oscillators by light injection. Appl Phys Lett, 8, 91-93(1966).

    [3] Yu C X, Fan T Y. Beam Combining [M]. New Yk: McGrawHill, 2011: 533571.

    [4] Zejin Liu, Pu Zhou, Xiaojun Xu. Coherent beam combining of high power fiber lasers: Progress and prospect. Scientia Sinica Technologica, 43, 979-990(2013).

    [5] H J Kong, S Park, S Cha. Conceptual design of the Kumgang laser: a high-power coherent beam combination laser using SC-SBS-PCMs towards a Dream laser. High Power Laser Science and Engineering, 3, e1(2015).

    [6] W S Brocklesby, J Nilsson, T Schreiber. ICAN as a new laser paradigm for high energy, high average power femtosecond pulses. Eur Phys J, 223, 1189-1195(2014).

    [7] P Ma, P Zhou, Y Ma. Coherent polarization beam combining of four high-power fiber amplifiers using single-frequency dithering technique. IEEE Photon Technol Lett, 24, 1024-1026(2012).

    [8] Pawlak R J. Recent developments near term directions f Navy laser weapons system (LaWS) testbed[C]SPIE, 2012, 8547: 854705.

    [9] Mohring B, Dietrich S, Tassini L, et al. Highenergy laser activities at MBDA Germany[C]SPIE, 2013, 8733: 873304.

    [10] Ludewigt K, Riesbeck T, Graf A, et al. 50 kW laser weapon demonstrat of Rheinmetall Waffe Munition[C]SPIE, 2013, 8898: 88980N.

    [11] C Lei, Y Gu, Z Chen. Incoherent beam combining of fiber lasers by an all-fiber 7×1 signal combiner at a power level of 14 kW. Opt Express, 26, 10421-10427(2018).

    [12] A Sanchez-Rubio, T Y Fan, S J Augst. Wavelength beam combining for power and brightness scaling of laser systems. Lincoln Laboratory Journal, 20, 52-66(2014).

    [13] Augst S J, Redmond S M, Yu C X, et al. Sanchez. Coherent spectral beam combining of fiber lasers[C]SPIE, 2012, 8237: 823704.

    [14] R K Huang, B Chann, L J Missaggia. Sanchez-Rubio. High-brightness wavelength beam combined semiconductor laser diode arrays. IEEE Photonics Technology Letters, 19, 209-211(2007).

    [15] B Chann, A K Goyal, T Y Fan. Efficient, high-brightness wavelength-beam-combined commercial off-the-shelf diode stacks achieved by use of a wavelength-chirped volume Bragg grating. Opt Lett, 31, 1253-1255(2006).

    [16] T H Loftus, A M Thomas, P R Hoffman. Spectral beam-combining fiber lasers for high-average-power applications. IEEE J Sel Top Quantum Electron, 13, 487-497(2007).

    [17] Loftus T H, Liu A, Hoffman P R, et al. 258 W of spectrally beam combined power with neardiffraction limited beam quality[C]SPIE, 2006, 6102: 61020S.

    [18] T H Loftus, A Liu, P R Hoffman. 522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality. Opt Lett, 32, 349-351(2007).

    [19] Afzal R S, Honea E, SavageLeuchs M, et al. Spectrally beam combined fiber lasers f high power, efficiency brightness [C]SPIE, 2012, 8547: 854706.

    [20] Honea E, Afzal R S, SavageLeuchs M, et al. Advances in fiber laser spectral beam combining f power scaling[C]SPIE, 2016, 9730: 97300Y.

    [21] Reich M, Limpert J, Liem A, et al. Spectral beam combining of ytterbiumdoped fiber lasers with a total output power of 100 W[C]Europhys Conf Abstracts, 2004: 28C Fib10137.

    [22] S Klingebiel, F Röser, B Ortac. Spectral beam combining of Yb-doped fiber lasers with high efficiency. J Opt Soc Am B, 24, 1716-1720(2007).

    [23] T Schreiber, C Wirth, O Schmidt. Incoherent beam combining of coutinuous-wave and pulsed Yb-doped fiber amplifiers. IEEE J Sel Top Quantum Electron, 15, 354-360(2009).

    [24] C Wirth, O Schmidt, I Tsybin. High average power spectral beam combining of four fiber amplifiers to 8.2 kW. Opt Lett, 36, 3118-3120(2011).

    [25] J Decker, P Crump, J Fricke. 25-W monolithic spectrally stabilized 975 nm minibars for dense spectral beam combining. IEEE Photonics Tech Lett, 27, 1675-1678(2015).

    [26] Witte U, Traub M, Meo A D, et al. Compact 35 µm fiber coupled diode laser module based on dense wavelength division multiplexing of NBA minibars[C]SPIE, 2017, 9733: 97330H.

    [27] A Sevian, O Andrusyak, I Ciapurin. Efficient power scaling of laser radiation by spectral beam combining. Opt Lett, 33, 384-386(2008).

    [28] Drachenberg D, Divliansky I, Smirnov V, et al. High power spectral beam combining of fiber lasers with ultra high spectral density by thermal tuning of volume Bragg gratings [C]SPIE, 2011, 7914: 79141F.

    [29] D Ott, I Divliansky, B Anderson. Scaling the spectral beam combining channels in a multiplexed volume Bragg grating. Opt Express, 21, 29620-29627(2013).

    [30] Regelskis K, Hou K C, Raciukaitis G, et al. Spatialdispersionfree spectral beam combining of high power pulsed Ybdoped fiber lasers[C]Conference on Lasers ElectroOpticsQuantum Electronics Laser Science Conference Photonic Applications Systems Technologies, OSA Technical Digest, 2008: CMA4.

    [31] Yi Ma, Hong Yan, Wanjing Peng. 9.6 kW common aperture spectral beam combination system based on multi-channel narrow-linewidth fiber lasers. Chinese Journal of Lasers, 43, 0901009(2016).

    [32] H Meng, T Sun, H Tan. High-brightness spectral beam combining of diode laser array stack in an external cavity. Opt Express, 23, 21819-21824(2015).

    [33] Y Zheng, Y Yang, J Wang. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation. Opt Express, 24, 12064-12071(2016).

    [34] J Zhang, H Peng, X Fu. CW 50W/M2 = 10.9 diode laser source by spectral beam combining based on a transmission grating. Opt Express, 21, 3627-3632(2013).

    [35] Man Jiang, Pengfei Ma, Pu Zhou. Beam quality in spectral beam combination based on multi-layer dielectric grating. Acta Physica Sinica, 65, 104203(2016).

    [36] F Chen, J Ma, C Wei. 10 kW-level spectral beam combination of two high power broad-linewidth fiber lasers by means of edge filters. Opt Express, 25, 32783-32791(2017).

    [37] Ye Zheng, Yifeng Yang, Xiang Zhao. Research Progress on Spectral Beam Combining Technology of High-Power Fiber Lasers. Chinese Journal of Lasers, 44, 0201018(2017).

    [38] Jun Zhang, Yongyi Chen, Li Qin. Advances in high power high beam quality diode lasers. Chinese Science Bulletin, 62, 3719-3728(2017).

    [39] K Nosu, H Ishio, K Hashimoto. Multireflection optical multi/demultiplexer using interference filters. Electron Lett, 15, 414-415(1979).

    [40] Minott P O, Abshire J B. Grating rhomb diode laser power combiner[C]SPIE, 1987, 756: 3849.

    [41] Rall J A R, Spadin P L, Zimmerman R K, et al. Test results of a diffraction grating beam combiner[C]FreeSpace Laser Commun Technol, 1990, 1218: 264275.

    [42] I H White. A multichannel grating cavity laser for wavelength division multiplexing applications. J Lightwave Technol, 9, 893-899(1991).

    [43] M C Farries, A C Carter, G G Jones. Tunable multiwavelength semiconductor laser with single fibre output. Electron Lett, 27, 1498-1499(1991).

    [44] B Chann, R K Huang, L J Missaggia. High-power, near-diffraction-limited diode laser arrays by wavelength beam combining. Opt Lett, 30, 2104-2106(2005).

    [45] Cook C C, Fan T Y. Spectral beam combining of Ybdoped fiber lasers in an external cavity[C]OSA, 1999, 26: 163–166.

    [46] V Daneu, A Sanchez, T Y Fan. Spectral beam combining of a broad-stripe diode laser array in an external cavity. Opt Lett, 25, 405-407(2000).

    [47] E J Bochove. Theory of spectral beam combining of fiber lasers. IEEE J Quantum Electron, 38, 432-445(2002).

    [48] S J Augst, A K Goyal, R L Aggarwal. Wavelength beam combining of ytterbium fiber lasers. Opt Lett, 28, 331-333(2003).

    [49] T Y Fan. Laser beam combining for high-power, high-radiance sources. IEEE J Sel Top Quantum Electron, 11, 567-577(2005).

    [50] D R Drachenberg, O Andrusyak, G Venus. Thermal tuning of volume Bragg gratings for spectral beam combining of high-power fiber lasers. Appl Opt, 53, 1242-1246(2014).

    [51] C Wirth, O Schmidt, I Tsybin. 2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers. Opt Express, 17, 1178-1183(2009).

    [52] Newswire P R. Lockheed Martin Demonstrates Weapons Grade High Power Fiber Laser [EBOL]. [20140128]. https:news.lockheedmartin..

    [53] Yan Zhang, Bin Zhang, Songjun Zhu. Analysis of the property of the beam after spectral beam combining. Acta Physica Sinica, 56, 4590-4595(2007).

    [54] Suqin Yin, Bin Zhang. Analysis of the output characteristics of high-power fiber lasers after spectral beam combination. Acta Optica Sinica, 31, 0214002(2011).

    [55] Yi Yu, Weimin Wang, Yan Lu. Simulation of spectrally beam combined diode laser based on grating-cavity. High Power Laser and Particle Beams, 20, 189-192(2008).

    [56] Bo Liu, Xue. Han Junting Zhang. Wavelength beam combining of laser diode array by wavelength-chirped volume Bragg grating external cavity. High Power Laser and Particle Beams, 20, 1057-1062(2008).

    [57] Shibing Pu, Zongfu Jiang, Xiaojun Xu. Numerical analysis of spectral beam combining by volume Bragg grating. High Power Laser and Particle Beams, 20, 721-724(2008).

    [58] Benjian Shen, Guangwei Zheng, Jichun Tan. Spectral beam combining by phase-shifted reflective volume Bragg gratings. Chinese Journal of Lasers, 12, 3056-3059(2010).

    [59] Shengbao Zhan, Shanghong Zhao, Shouchun Ni. Design of spectral beam combining based on reflecting volume Bragg grating. High Power Laser and Particle Beams, 4, 929-933(2011).

    [62] Taidou Zhou, Xiaobao Liang, Chao Li. 2.5 kW average power, two-channel spectral-beam-combined output based on transmitting volume Bragg grating. Aca Physica Sinica, 66, 084204(2017).

    [64] Z Wu, Z Zhong, L Yang. Beam properties in a spectral beam combining system based on trapezoidal multilayer dielectric gratings. J Opt Soc Am B, 33, 171-179(2016).

    [65] L Yang, Z Wu, B Zhang. Influence of thermal deformation of a multilayer dielectric grating on a spectrally combined beam. Appl Opt, 55, 9091-9100(2016).

    [66] J Chen, Y Zhang, Y Wang. Polarization-independent broadband beam combining grating with measured over 98% diffraction efficiency from 1023nm to 1080nm. Opt Lett, 42, 4016-4019(2017).

    [67] J Tian, J Zhang, H Peng. High power diode laser source with a transmission grating for two spectral beam combining. Optik, 192, 162918(2019).

    [68] F Sun, S Shu, Y Zhao. High-brightness diode lasers obtained via off-axis spectral beam combining with selective feedback. Opt Express, 26, 21813-21818(2018).

    [69] Sun Fangyuan. Investigation of high beam quality laser by external cavity combination technology[D]. Beijing: University of Chinese Acadeny of Sciences, 2018. (in Chinese)

    [70] Jiang Man. Study on the key technique of fiber laser spectral beam combining [D]. Changsha: National University of Defense Technology, 2017. (in Chinese)

    [71] F Chen, J Ma, R Zhu. Coupling efficiency model for spectral beam combining of high-power fiber lasers calculated from spectrum. Appl Opt, 56, 2574-2579(2017).

    [72] F Chen, J Zhang, J Ma. Beam quality analysis and optimization for 10 kW-level spectral beam combination system. Opt Commun, 444, 45-55(2019).

    [73] Liu Q, Jin Y, Wu J, et al. Fabrication of the polarization independent spectral beam combining grating [C]SPIE, 2016, 10255: 1025514

    [74] X Mao, C Li, K Qiu. Design and fabrication of 1300-line/mm polarization-independent reflection gratings for spectral beam combining. Opt Commun, 458, 124883-4(2020).

    [75] Z Wu, Y Xu, Y Huang. Influence of process errors of dielectric gratings on beam properties in transmission spectral-beam-combining systems. Appl Opt, 58, 4300-4305(2019).

    [76] O Schmidt, C Wirth, D Nodop. Spectral beam combination of fiber amplified ns-pulses by means of interference filters. Opt Express, 17, 22974-22982(2009).

    [77] H Jiao, X Niu, X Zhang. Design and fabrication of a superior nonpolarizing long-wavelength pass edge filter applied in laser beam combining technology. Appl Opt, 59, A162-A166(2020).

    [78] Efimov O M, Glebov L B, Smirnov V I. High efficiency volume diffractive elements in photothermorefractive glass: US, 6673497 [P]. 20040106.

    [79] O Andrusyak, V Smirnov, G Venus. Spectral combining and coherent coupling of lasers by volume Bragg gratings. IEEE J Select Top Quantum Electron, 15, 344-353(2009).

    [80] rusyak O, Ciapurin I, Smirnov V, et al. Spectral beam combining of fiber lasers with increased channel density[C]SPIE, 2007, 6453: 64531L.

    [81] Hamilton C E, Tidwell S C, Lowenthal D D. Highpower laser source with spectrally beamcombined diode laser bars [C]SPIE, 2004, 5336: 110.

    [82] D Vijayakumar, O B Jensen, R Ostendorf. Spectral beam combining of a 980 nm tapered diode laser bar. Opt Express, 18, 893-8(2010).

    [83] J Hecht. Beam combining cranks up the power. Laser Focus World, 48, 41-43(2012).

    [84] Huang R K, Chann B, Burgess J, et al. Teradiode’s high brightness semiconduct lasers [C]SPIE, 2016, 9730: 97300C.

    [85] U Witte, F Schneider, M Traub. kW-class direct diode laser for sheet metal cutting based on DWDM of pump modules by use of ultra-steep dielectric filters. Opt Express, 24, 22917-22929(2016).

    [86] Huang R K, Chann B, Glenn J D. Ultrahigh brightness wavelengthstabilized kWclass fiber coupled diode laser[C]SPIE, 2011, 7918: 791810.

    [87] Wood M. Laser beam technology development application [C]7th Alta Brillanza Wkshop, 2015: 24–25.

    [88] Zimer H, Haas M, Nagel S, et al. Spectrally stabilized combined diode lasers[C]IEEE Conf on High Power Diode Lasers Systems, 2015: 31–32.

    [89] Heinemann S, Fritsche H, Kruschke B, et al. Compact high brightness diode laser emitting 500W from a 100 μm fiber[C]SPIE, 2013, 8605: 86050Q.

    [90] Unger A, Uthoff R, Stoiber M, et al. Tailed bar concepts f 10 mmmrad fiber coupled modules scalable to kWclass direct diode lasers[C]SPIE, 2015, 9348: 934809.

    [91] S Hengesbach, N Krauch, C Holly. High-power dense wavelength division multiplexing of multimode diode laser radiation based on volume Bragg gratings. Opt Lett, 38, 3154-3157(2013).

    [92] Fritsche H, Krusche B, Koch R, et al. High brightness, direct diode laser with kW output power [C]SPIE, 2014, 8965: 89650G.

    [93] Ferrario F, Fritsche H, Grohe A, et al. Building block diode laser concept f high brightness laser output in the kW range its applications [C]SPIE, 2016, 9730: 97300G.

    [94] Witte U, Schneider F, Holly C, et al. kWclass direct diode laser f sheet metal cutting based on commercial pump modules [C]SPIE, 2017, 10086: 1008608.

    [95] Zimer H, Haas M, Ried S, et al. Thin film filter wavelengthlocked laser cavity f spectral beam combining of diode laser arrays [C]Photonics Conference, 2014: 230231.

    [96] M Haas, S Rauch, S Nagel. Thin-film filter wavelength-stabilized, grating combined, high-brightness kW-class direct diode laser. Opt Express, 25, 17657-17670(2017).

    [97] Strohmaier S G, Erbert G, MeissnerSchenk A H, et al. kWclass diode laser bars[C]SPIE, 2017, 10086: 100860C.

    [98] J Zhang, H Y Peng, Y Liu. Hundred-watt diode laser source by spectral beam combining. Laser Phys Lett, 11, 125803(2014).

    [99] Z Zhu, L Gou, M H Jiang. High beam quality in two directions and high efficiency output of a diode laser array by spectral-beam-combining. Opt Express, 22, 17804-17809(2014).

    [100] Huicheng Meng, Deyong Wu, Hao Tan. Experimental study on high brightness and narrow band of diode laser by spectral beam combining of grating-external cavity. Chinese Journal of Lasers, 42, 0302003(2015).

    [101] H Meng, X Ruan, W Du. Scaling the spectral beam combining channel by multiple diode laser stacks in an external cavity. Laser Phys Lett, 14, 045811(2017).

    [102] X Lin, G Lin, P Zhao. Generation of high brightness diode laser by using spectral and polarization beam combination. Opt and Laser Tech, 116, 219-223(2019).

    [103] O Schmidt, T V Andersen, J Limpert. 187 W, 3.7 mJ from spectrally combined pulsed 2 ns fiber amplifiers. Opt Lett, 34, 226-228(2009).

    [104] O Schmidt, C Wirth, I Tsybin. Average power of 1.1 kW from spectrally combined, fiber-amplifiered, nanosecond-pulsed sources. Opt Lett, 34, 1567-1569(2009).

    [105] Newswire P R. Turning up the heat: latest evolution of Lockheed Martin laser weapon system stops truck in field test [EBOL]. [20150303]. https:news.lockheedmartin.comingUptheHeatLatestEvolutionofLockheedMartinLaserWeaponSystemStopsTruckinFieldTest.

    [106] Newswire P R. Lockheed Martin to deliver wld recdsetting 60 kW laser to U.S. Army [EBOL]. [20170316]. http:news.lockheedmartin.com.

    [107] Newswire P R. Team Dyics Receives Contract F Next Phase Of 100 KWClass Laser Weapon System F U.S. Army [EBOL]. [20180806]. https:news.lockheedmartin.com.

    [108] X Liang, L Chen, C Li. High average power spectral beam combining employing volume Bragg gratings. High Power Laser and Particle Beams, 27, 071012(2015).

    [109] T Zhou, X Liang, C Li. Spectral beam combining of fiber lasers by using reflecting volume Bragg gratings. Chin Phys Lett, 33, 124205(2016).

    [110] Yi Ma, Hong Yan, Fei Tian. Common aperture spectral beam combination of fiber lasers with 5 kW power high-efficiency and high-quality output. High Power Laser and Particle Beams, 27, 7-9(2015).

    [111] M Jiang, P Ma, P Zhou. Spectral beam combining of fiber laser with wavelength separation broader than 60 nm. Laser Physics, 26, 115104(2016).

    [112] X Wang, X Jin, P Zhou. 105 W ultra-narrowband nanosecond pulsed laser at 2 μm based on a monolithic Tm-doped fiber MOPA. Opt Express, 23, 4233-4241(2015).

    [113] X Jin, Z Lou, H Zhang. Random distributed feedback fiber laser at 2.1 μm. Opt Lett, 41, 4923-4926(2016).

    [114] X Jin, E Lee, J Luo. High-efficiency ultrafast Tm-doped fiber amplifier based on resonant pumping. Opt Lett, 43, 1431-1434(2018).

    [115] R A Sims, C C C Willis, P Kadwani. Spectral beam combining of 2 μm Tm fiber laser systems. Opt Commun, 284, 1988-1991(2011).

    [116] Yilmaz S, Ottenhues C, Theeg T, et al. Singlemode spectral beam combining of high power Tmdoped fiber lasers with WDM cades [C]SPIE, 2016, 9728: 97280O.

    [117] J Limpert, F Röser, S Klingebiel. The rising power of fiber lasers and amplifiers. IEEE J Sel Top Quantum Electron, 13, 537-545(2007).

    [118] Liu A, Mead R, Vatter T, et al. Spectral beam combining of high power fiber lasers[C]SPIE 2004, 5335: 8188.

    [119] P Madasamy, D R Jander, C D Brooks. Dual-grating spectral beam combining of high-power fiber lasers. IEEE J Sel Top Quantum Electron, 15, 337-343(2009).

    [120] Rongtao Su, Pengfei Ma, Xiaolin Wang. 2.43kw power output of linearly polarized narrow linewidth single mode fiber amplifier. Chinese Journal of Lasers, 44, 0315001(2017).

    [121] P Ma, H Xiao, D Meng. High power all-fiberized and narrow-bandwidth MOPA system by tandem pumping strategy for thermally induced mode instability suppression. High Power Laser Science and Engineering, 6, e57(2018).

    [122] Platonov N, Yagodkin R, Cruz J, et al. 1.5 kW linear polarized on PM fiber 2 kW on nonPM fiber narrow linewidth CW diffractionlimited fiber amplifier [C]SPIE, 2017, 10085: 100850M.

    [123] Yi Ma, Hong Yan, Yinhong Sun. Recent progress of key technologies for spectral beam combining of fiber laser with dual-gratings configuration. Infrared and Laser Engineering, 47, 0103002(2018).

    [124] rusyak O, Smimov V, Venus G, et al. Applications of volume Bragg gratings f spectral control beam combining of high power fiber lasers [C]SPIE, 2009, 7195: 71951Q.

    [125] Fan T Y, Goyal A, Sanchez A. Higher power spectrally combined laser systems related methods. US Patent 6, 697, 192, Feb. 24, 2004.

    [126] M Fridman, V Eckhouse, N Davidson. Simultaneous coherent and spectral addition of fiber lasers. Opt Lett, 33, 648-650(2008).

    [127] Jain A, Drachenberg D, rusyak O, et al. Coherent spectral beam combining of fiber lasers using volume Bragg gratings [C]SPIE, 2010, 7686: 768615.

    [128] P Ma, M Jiang, X Wang. Hybrid Beam Combination by active phasing and bandwidth-controlled dichromatic mirror. IEEE Photonics Technology Letters, 27, 2099-2102(2015).

    [129] H Yan, Y Man, Y Sun. Scalable hybrid beam combining of kilowatt fiber amplifiers into a 5-kW beam. Opt Commun, 397, 95-99(2017).

    [130] McNaught S J, Asman C P, Injeyan H, et al. 100kW coherently combined Nd: YAG MOPA laser array [C]Frontiers in Optics 2009Laser Science XXVFall 2009 OSA Optics &Photonics Technical Digest, 2009: FThD2.

    [131] Y L Lim, P Dean, M Nikolic. Demonstration of a self-mixing displacement sensor based on terahertz quantum cascade lasers. Applied Physics Letters, 99, 156-1(2011).

    [132] P D Grant, S R Laframboise, R Dudek. Terahertz free space communications demonstration with quantum cascade laser and quantum well photodetector. Electronics Letters, 45, 952-954(2009).

    [133] P I Abramov, E V Kuznetsov, L A Skvortsov. Skvortsova. Quantum-Cascade Lasers in Medicine and Biology (Review). Journal of Applied Spectroscopy, 86, 1-26(2019).

    [134] G Liang, T Liu, Wang Q J and. Recent Developments of Terahertz Quantum Cascade Lasers. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1-18(2017).

    [135] Y J Han, J Partington, R C Pun. Gas spectroscopy through multimode self-mixing in a double-metal terahertz quantum cascade laser. Opt Lett, 43, 5933-5936(2018).

    [136] X Chen, X Liu, X Guo. THz near-field imaging of extreme subwavelength metal structures. ACS Photonics, 7, 687-694(2020).

    [137] R Köhler, A Tredicucci, F Beltram. Terahertz semiconductor-heterostructure laser. Nature, 417, 156(2002).

    [138] B S Williams. Terahertz quantum-cascade lasers. Nature Photonics, 1, 517-525(2007).

    [139] C Deutsch, M A Kainz, M Krall. High-Power Growth-Robust InGaAs/InAlAs Terahertz Quantum Cascade Lasers. Acs Photonics, 4, 957-962(2017).

    [140] H Zhu, H Zhu, F Wang. Terahertz master-oscillator power-amplifier quantum cascade laser with a grating coupler of extremely low reflectivity. Opt Express, 26, 1942-1953(2018).

    [141] Y Jin, Q Zhu, J L Reno. High power edge-cum-surface emitting terahertz laser arrays phased locked by vacuum guided plasmon waves. Applied Physics Letters, 116, 131103(2020).

    [142] Y Jin, J L Reno, S Kumar. Phase-locked terahertz plasmonic laser array with 2 W output power in a single spectral mode. Optica, 7, 708-715(2020).

    [143] T Kao, Q Hu, J L Reno. Phase-locked arrays of surface-emitting terahertz quantum-cascade lasers. Applied Physics Letters, 96, 101106(2010).

    CLP Journals

    [1] Ke Wang, Jun Cai, Yu Ding, Qili Hu, Le Zhang. Study on polarization beam combining experimental of mid-infrared quantum cascade laser[J]. Infrared and Laser Engineering, 2022, 51(8): 20210679

    [2] Zhuang Jin, Jing Li, Menghua Jiang, Youqiang Liu, Wenbin Qin, Yinhua Cao, Zhiyong Wang. Influence of output mirror free external cavity spectral beam combining structure on feedback efficiency[J]. Infrared and Laser Engineering, 2023, 52(3): 20220446

    Man Jiang, Pengfei Ma, Rongtao Su, Can Li, Jian Wu, Yanxing Ma, Pu Zhou. Research progress and prospect of spectral beam combining (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201053
    Download Citation