• Journal of Innovative Optical Health Sciences
  • Vol. 12, Issue 3, 1941001 (2019)
Qin Zeng, Yunxia Wu, and Tao Zhang*
Author Affiliations
  • MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China
  • show less
    DOI: 10.1142/s1793545819410013 Cite this Article
    Qin Zeng, Yunxia Wu, Tao Zhang. Photoacoustic nanoprobe for β-galactosidase activity detection and imaging in vivo[J]. Journal of Innovative Optical Health Sciences, 2019, 12(3): 1941001 Copy Citation Text show less
    References

    [1] T. Komatsu, Y. Urano, “Evaluation of enzymatic activities in living systems with small-molecular fluorescent substrate probes," Anal. Sci. 31, 257–265 (2015).

    [2] S. K. Chatterjee, M. Bhattacharya, J. J. Barlow, “Glycosyltransferase and glycosidase activities in ovarian cancer patients," Cancer Res. 39, 1943–1951 (1979).

    [3] M. E. Van Dort, K. C. Lee, C. A. Hamilton, A. Rehemtulla, B. D. Ross, “Radiosynthesis and evaluation of 5-[125I]Iodoindol-3-yl-β-d-galactopyranoside as a β-galactosidase imaging radioligand," Mol. Imag. 7, 187–197 (2008).

    [4] S. Celen, C. Deroose, T. D. Groot, S. K. Chitneni, R. Gijsbers, Z. Debyser, L. Mortelmans, A. Verbruggen, G. Bormans, “Synthesis and evaluation of 18F- and 11C-labeled phenyl-galactopyranosides as potential probes for in vivo visualization of LacZ gene expression using positron emission tomography," Bioconjugate Chem. 19, 441–449 (2008).

    [5] A. Yamamoto, S. Adachi, S. Kawamura, “Localized β-galactosidase deficiency: Occurrence in cerebellar ataxia with myoclonus epilepsy and macular cherryred spot — a new variant of gm1-gangliosidosis " Arch. Intern. Med. 134, 627–634 (1974).

    [6] J. T. Lo, K. Mukerji, Y. Awasthi, E. Hanada, K. Suzuki, S. K. Srivastava, “Purification and properties of sphingolipid β-galactosidase from human placenta," J. Biol. Chem. 254, 6710–6715 (1979).

    [7] J. Hofmann, M. Sernetz, “Immobilized enzyme kinetics analyzed by flow-through microfluorimetry: Resorufin-β-d-galactopyranoside as a new fluorogenic substrate for β-galactosidase," Anal. Chim. Acta. 163, 67–72 (1984).

    [8] G.-B. Ge, J. Ning, L.-H. Hu, Z.-R. Dai, J. Hou, Y.-F. Cao, Z.-W. Yu, C.-Z. Ai, J.-K. Gu, X.-C. Ma, “A highly selective probe for human cytochrome P450 3A4: Isoform selectivity, kinetic characterization and its applications," Chem. Commun. 49, 9779–9781 (2013).

    [9] Z.-R. Dai, G.-B. Ge, L. Feng, J. Ning, L.-H. Hu, Q. Jin, D.-D. Wang, X. Lv, T.-Y. Dou, J.-N. Cui, “A highly selective ratiometric two-photon fluorescent probe for human cytochrome P450 1A," J. Am. Chem. Soc. 137, 14488–14495 (2015).

    [10] C. Kim, C. Favazza, L. V. Wang, “In vivo photoacoustic tomography of chemicals: High-resolution functional and molecular optical imaging at new depths," Chem. Rev. 110, 2756–2782 (2010).

    [11] Z. Chen, S. Yang, D. Xing, “Optically integrated trimodality imaging system: Combined all-optical photoacoustic microscopy, optical coherence tomography, fluorescence imaging," Opt. Lett. 41, 1636–1639 (2016).

    [12] X. Yang, Y. Liu, D. Zhu, R. Shi, Q. Luo, “Dynamic monitoring of optical clearing of skin using photoacoustic microscopy and ultrasonography," Opt. Express 22, 1094–1104 (2014).

    [13] H. Chen, J. Zhang, K. Chang, X. Men, X. Fang, L. Zhou, D. Li, D. Gao, S. Yin, X. Zhang, Z. Yuan, C. Wu, Highly absorbing multispectral near-infrared polymer nanoparticles from one conjugated backbone for photoacoustic imaging and photothermal therapy," Biomaterials 144, 42–52 (2017).

    [14] L. V. Wang, S. Hu, “Photoacoustic tomography: In vivo imaging from organelles to organs," Science 335, 1458–1462 (2012).

    [15] J. Zhong, S. Yang, “Contrast-enhanced photoacoustic imaging using indocyanine green-containing nanoparticles," J. Innovative Opt. Health Sci. 7, 1350229 (2014).

    [16] Y. Liu, X. Yang, D. Zhu, R. Shi, Q. Luo, “Optical clearing agents improve photoacoustic imaging in the optical diffusive regime," Opti. Lett. 38, 4236–4239 (2013).

    [17] J. Weber, P. C. Beard, S. E. Bohndiek, “Contrast agents for molecular photoacoustic imaging," Nat. Methods 13, 639–650 (2016).

    [18] S. Wang, J. Lin, T. Wang, X. Chen, P. Huang, “Recent advances in photoacoustic imaging for deep-tissue biomedical applications," Theranostics 6, 2394–2413 (2016).

    [19] L. L. Zeng, G. C. Ma, J. Lin, P. Huang, “Photoacoustic probes for molecular detection: Recent advances and perspectives," Small 14, 1800782 (2018).

    [20] H. B. Xiao, C. C. Wu, P. Li, W. Gao, W. Zhang, W. Zhang, L. L. Tong, B. Tang, “Ratiometric photoacoustic imaging of endoplasmic reticulum polarity in injured liver tissues of diabetic mice," Chem. Sci. 8, 7025–7030 (2017).

    [21] K. Pu, A. J. Shuhendler, J. V. Jokerst, J. Mei, S. S. Gambhir, Z. Bao, J. Rao, “Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice," Nat. Nanotechnol. 9, 233–239 (2014).

    [22] W. H. Cao, W. Gao, Z. H. Liu, W. J. Hao, X. Li, Y. H. Sun, L. L. Tong, B. Tang, “Visualizing miR-155 To monitor breast tumorigenesis and response to chemotherapeutic drugs by a self-assembled photoacoustic nanoprobe," Anal. Chem. 90, 9125–9131 (2018).

    [23] W. X. Xu, J. Q. Chen, S. Sun, Z. D. Tang, K. Jiang, L. Song, Y. H. Wang, C. B. Liu, H. W. Lin, “Fluorescent and photoacoustic bifunctional probe for the detection of ascorbic acid in biological fluids, living cells and in vivo," Nanoscale 10, 17834–17841 (2018).

    [24] Q. Chen, X. Liu, J. Chen, J. Zeng, Z. Cheng, Z. Liu, “A self-assembled albumin-based nanoprobe for in vivo ratiometric photoacoustic pH imaging," Adv. Mater. 27, 6820–6827 (2015).

    [25] K. Yang, L. Zhu, L. Nie, X. Sun, L. Cheng, C. Wu, G. Niu, X. Chen, Z. Liu, “Visualization of protease activity in vivo using an activatable photo-acoustic imaging probe based on CuS nanoparticles," Theranostics 4, 134–141 (2014).

    [26] H. Li, P. Zhang, L. P. Smaga, R. A. Hoffman, J. Chan, “Photoacoustic probes for ratiometric imaging of copper (II)," J .Am. Chem. Soc. 137, 15628–15631 (2015).

    [27] K. J. Cash, C. Li, J. Xia, L. V. Wang, H. A. Clark, “Optical drug monitoring: photoacoustic imaging of nanosensors to monitor therapeutic lithium in vivo," ACS Nano 9, 1692–1698 (2015).

    [28] Y. Liu, S. Wang, Y. Ma, J. Lin, H. Y. Wang, Y. Gu, X. Chen, P. Huang, “Ratiometric Photoacoustic molecular imaging for methylmercury detection in living subjects," Adv. Mater. 29, 1606129 (2017).

    [29] X. Zhen, J. Zhang, J. Huang, C. Xie, Q. Miao, K. Pu, “Macrotheranostic probe with diseaseactivated near-infrared fluorescence, photoacoustic and photothermal signals for imageing-guided therapy," Angew. Chem. 130, 7930–7934 (2018).

    [30] J. Zhang, C. Li, C. Dutta, M. Fang, S. Zhang, A. Tiwari, T. Werner, F.-T. Luo, H. Liu, “A novel near-infrared fluorescent probe for sensitive detection of β-galactosidase in living cells," Anal. Chim. Acta. 968, 97–104 (2017).

    [31] T. Ma, J. Zheng, T. Zhang, D. Xing, “Ratiometric photoacoustic nanoprobes for monitoring and imaging of hydrogen sulfide in vivo," Nanoscale 10, 13462–13470 (2018).

    [32] Xie, P. K. Upputuri, X. Zhen, M. Pramanik, K. Pu, “Self-quenched semiconducting polymer nanoparticles for amplified in vivo photoacoustic imaging," Biomaterials 119, 1–8 (2017).

    Qin Zeng, Yunxia Wu, Tao Zhang. Photoacoustic nanoprobe for β-galactosidase activity detection and imaging in vivo[J]. Journal of Innovative Optical Health Sciences, 2019, 12(3): 1941001
    Download Citation