• Infrared and Laser Engineering
  • Vol. 49, Issue 4, 0403007 (2020)
Jing Li, Hao Mei, Chenglin He, Yi Zuo, and Luoke Sun
Author Affiliations
  • China Airborne Missile Academy, Luoyang 471009, China
  • show less
    DOI: 10.3788/IRLA202049.0403007 Cite this Article
    Jing Li, Hao Mei, Chenglin He, Yi Zuo, Luoke Sun. Laser fuze anti-interference method based on pulse width modulation technique[J]. Infrared and Laser Engineering, 2020, 49(4): 0403007 Copy Citation Text show less

    Abstract

    In view of the problem that laser fuze is easily interfered by fog and smoke, a new laser fuze anti-interference method based on pulsed width modulation technique was proposed. The fog echo signal power of different pulse width was computed, and the variation of echo signal power under the influence of transmitted pulse duration was given. The echo signal power ratio in different fog and aerosols environment was analyzed by using different pulse width to detect. The experiment results show that by using different pulse width to detect, the ratio of backscattering power is usually more than 3. Therefore, this method can be used to improve anti-interference ability of laser fuze.
    ${P_r} = \frac{{{P_t}{\tau _1}{\tau _2}\rho {A_r}}}{{\pi {R^2}}} $ (1)

    View in Article

    $ \begin{split} & p(1) = {e^{ - {\sigma _s}H}} \\ & p(2) = \frac{{S(H)}}{{{H^2}{\varOmega _\Pi }^2}}{\sigma _s}\Delta H \\ & p(3) = f(\theta )\frac{{{S_{BX}}}}{{{H^2}}} \\ & p(4) = {e^{ - {\sigma _s}}} \end{split} $ (2)

    View in Article

    $ \begin{split} p =\; & p(1)p(2)p(3)p(4) = \\ & {\sigma _s}\frac{{{S_{BX}}}}{{{H^2}}}f(\theta )\frac{{S(H)}}{{{H^2}{\varOmega _\Pi }^2}}{e^{ - {\sigma _s}\Delta H}}\Delta H \end{split} $ (3)

    View in Article

    $ \mathop n\limits^ - = \frac{{{P_0}{\tau _n}}}{{hv}} $ (4)

    View in Article

    $ {h_\Pi} = {S_{BX}}f(\theta ){\sigma _s}\frac{{S(H)}}{{4\pi {H^2}\varOmega _\Pi ^2}}{e^{ - {\sigma_s}H}} $ (5)

    View in Article

    $ {P_\Pi }(H) = \int_0^H {{h_\Pi }(R)} {P_{N}}(H - R)\rm{d}R $ (6)

    View in Article

    $ {{P}_{{N}}}(t)={{P}_{0}}{{e}^{{}^{t}\!\!\diagup\!\!{}_{{{\tau }_{n}}}\;}} $ (7)

    View in Article

    $ {P_\Pi }(H) = {P_0}{S_{BX}}f(\theta ){\sigma _s}\int\nolimits_{{H_0}}^H {\frac{{{S_H}(R)}}{{{R^2}}}} {{\rm{e}}^{ - 2{\sigma _s}(R - {H^*}) - {k_m}(H - R)}}{\rm{d}}R $ (8)

    View in Article

    $ {k_m} = \frac{2}{{C{\tau _n}}} $ (9)

    View in Article

    $ \begin{split} & \frac{{P({\tau _n} = 100\;{\rm{ ns}})}}{{P({\tau _n} = 50\;{\rm{ ns}})}} = 1.21 \\ & \frac{{P({\tau _n} = 100\;{\rm{ ns}})}}{{P({\tau _n} = 20\;{\rm{ ns}})}} = 2.12 \\ & \frac{{P({\tau _n} = 100\;{\rm{ ns}})}}{{P({\tau _n} = 10\;{\rm{ ns}})}} = 5.01 \end{split} $ (10)

    View in Article

    Jing Li, Hao Mei, Chenglin He, Yi Zuo, Luoke Sun. Laser fuze anti-interference method based on pulse width modulation technique[J]. Infrared and Laser Engineering, 2020, 49(4): 0403007
    Download Citation