• Opto-Electronic Engineering
  • Vol. 44, Issue 12, 1200 (2017)
Qiang Yang1, Lingfei Ji1、*, Bo Xu2, Tianyang Yan1, Wenhao Wang1, and Zhenyuan Lin1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.12.008 Cite this Article
    Qiang Yang, Lingfei Ji, Bo Xu, Tianyang Yan, Wenhao Wang, Zhenyuan Lin. Picosecond laser microfabrication of infrared antireflective functional surface on As2Se3glass[J]. Opto-Electronic Engineering, 2017, 44(12): 1200 Copy Citation Text show less
    References

    [1] Dai Shixun, Chen Huiguang, Li Maozhong, et al. Chalcogenide glasses and their infrared optical applications[J]. Infrared and Laser Engineering, 2012, 41(4): 847-852.

    [2] Goubet E, Katz J, Porikli F. Pedestrian tracking using thermal infrared imaging[J]. Proceedings of SPIE, 2006, 6206: 62062C.

    [3] Fu Xiuhua, Jiang Hongyan, Zhang Jing, et al. Preparation of short and medium wave infrared anti-reflective coating based on chalcogenide glass[J]. Chinese Journal of Lasers, 2017, 44(9): 903002.

    [4] Bernhard C G, Miller W H. A corneal nipple pattern in insect compound eyes[J]. Acta Physiologica Scandinavica, 1962, 56(3-4): 385-386.

    [5] Raguin D H, Morris G M. Antireflection structured surfaces for the infrared spectral region[J]. Applied Optics, 1993, 32(7): 1154-1167.

    [6] Denatale J F, Hood P J, Flintoff J F, et al. Fabrication and characterization of diamond moth eye antireflective surfaces on Ge[J]. Journal of Applied Physics, 1992, 71(3): 1388-1393.

    [7] Southwell W H. Pyramid-array surface-relief structures pro-ducing antireflection index matching on optical surfaces[J]. Journal of the Optical Society of America A, 1991, 8(3): 549-553.

    [8] Wilson S J, Hutley M C. The optical properties of 'moth eye' antireflection surfaces[J]. Optica Acta: International Journal of Optics, 1982, 29(7): 993-1009.

    [9] MacLeod B D, Hobbs D S, Sabatino E. Moldable AR micro-structures for improved laser transmission and damage re-sistance in CIRCM fiber optic beam delivery systems[J]. Pro-ceedings of SPIE, 2011, 8016: 80160Q.

    [10] Hobbs D S, MacLeod B D, Riccobono J R. Update on the development of high performance anti-reflecting surface relief micro-structures[J]. Proceedings of SPIE, 2007, 6545: 65450Y.

    [11] Hobbs D S, MacLeod B D. Design, fabrication, and measured performance of anti-reflecting surface textures in infrared transmitting materials[J]. Proceedings of SPIE, 2005, 5786: 349-364.

    [12] Feng Xianfei, Deng Jun, Liu Ming, et al. Microlens array for shortwave infrared detectors[J]. Opto-Electronic Engineering, 2017, 44(6): 633-637.

    [13] Miao Xiangyang. Study of treatment and application of solar glass[D]. Beijing: China Building Materials Academy, 2009.

    [14] Abbott M, Cotter J. Optical and electrical properties of laser texturing for high-efficiency solar cells[J]. Progress in Photo-voltaics: Research and Applications, 2006, 14(3): 225-235.

    [15] Wang Quanji, Zhou Weidong. Direct fabrication of cone array microstructure on monocrystalline silicon surface by femto-second laser texturing[J]. Optical Materials, 2017, 72: 508-512.

    [16] He Chao. Study on laser texturization on the surface of solar glass[D]. Beijing: Beijing University of Technology, 2012.

    [17] Ji Lingfei, Lv Xiaozhan, Wu Yan, et al. High performance light trapping structures for Si-based photoelectronics fabricated by hybrid picosecond laser irradiation and chemical corrosion[J]. Proceedings of SPIE, 2015, 9351: 93511R.

    [18] Ji Lingfei, Lv Xiaozhan, Wu Yan, et al. Hydrophobic light-trapping structures fabricated on silicon surfaces by pi-cosecond laser texturing and chemical etching[J]. Journal of Photonics for Energy, 2015, 5(1): 053094.

    [19] Lv Xiaozhan, Ji Lingfei, Wu Yan, et al. Fabrication of high performance anti-reflection silicon surface by picosecond laser scanning irradiation with chemical corrosion[J]. Chinese Journal of Lasers, 2015, 42(4): 0403006.

    [20] Liu J M. Simple technique for measurements of pulsed Gaussian-beam spot sizes[J]. Optics Letters, 1982, 7(5): 196-198.

    [21] Li Jun, Drabold D A. First-principles molecular-dynamics study of glassy As2Se3[J]. Physical Review B, 2000, 61(18): 11998-12004.

    [22] Dong Tingting. Research on optical mechanism of bionic moth-eye antireflection microstructure[D]. Changchun: Changchun University of Science and Technology, 2016.

    [23] Li Linhan. Preparation and protection of ZnS surface sub-wavelength structure for infrared window[D]. Harbin: Har-bin Institute of Technology, 2015.

    [24] Chen Pengjie. Study on broadband antireflective subwave-length structures process[D]. Chengdu: University of Electronic Science and Technology of China, 2013.

    [25] You Chenyang, Dai Shixun, Zhang Peiqing, et al. Mid-infrared femtosecond laser-induced damages in As2S3 and As2Se3chalcogenide glasses[J]. Scientific Reports, 2017, 7(1): 6497.

    [26] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551.

    Qiang Yang, Lingfei Ji, Bo Xu, Tianyang Yan, Wenhao Wang, Zhenyuan Lin. Picosecond laser microfabrication of infrared antireflective functional surface on As2Se3glass[J]. Opto-Electronic Engineering, 2017, 44(12): 1200
    Download Citation