• Journal of Innovative Optical Health Sciences
  • Vol. 16, Issue 1, 2230018 (2023)
Jianhua Zhao1、2, Yuan Zhao1、2, Zhenguo Wu1、2, Yunxian Tian1、2, and Haishan Zeng1、2、*
Author Affiliations
  • 1Integrative Oncology Department – Imaging Unit, BC Cancer Research Institute, Vancouver, BC, Canada
  • 2Department of Dermatology and Skin Science, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
  • show less
    DOI: 10.1142/S179354582230018X Cite this Article
    Jianhua Zhao, Yuan Zhao, Zhenguo Wu, Yunxian Tian, Haishan Zeng. Nonlinear optical microscopy for skin in vivo: Basics, development and applications[J]. Journal of Innovative Optical Health Sciences, 2023, 16(1): 2230018 Copy Citation Text show less
    References

    [1] W. Denk, J. H. Strickler, W. W. Webb. Two photon laser scanning fluorescence microscopy. Science, 248, 73-76(1990).

    [2] R. Williams, D. Piston, W. Webb. Two-photon molecular excitation provides intrinsic 3-dimensional resolution for laser-based microscopy and microphotochemistry. FASEB J., 8, 804-813(1994).

    [3] C. Xu, W. W. Webb. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050nm. J. Opt. Soc. Am. B, 13, 481-491(1996).

    [4] P. T. C. So, C. Y. Dong, B. R. Masters, K. M. Berland. Two-photon excitation fluorescence microscopy. Annu. Rev. Biomed. Eng., 2, 399-429(2000).

    [5] P. Schwille, U. Haupts, S. Maiti, W. W. Webb. Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation. Biophys. J., 77, 2251-2265(1999).

    [6] M. Rubart. Two-photon microscopy of cells and tissue. Circ. Res., 95, 1154-1166(2004).

    [7] D. W. Piston. Imaging living cells and tissues by two-photon excitation microscopy. Trends Cell Biol., 9, 66-69(1999).

    [8] J. Sawinski, W. Denk. Miniature random-access fiber scanner for in vivo multiphoton imaging. J. Appl. Phys., 102, 034701(2007).

    [9] K. Svoboda, R. Yasuda. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron, 50, 823-839(2006).

    [10] W. Denk, K. R. Delaney, A. Gelperin, D. Kleinfeld, B. W. Strowbridge, D. W. Tank, R. Yuste. Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy. J. Neurosci. Meth., 54, 151-162(1994).

    [11] C. Stosiek, O. Garaschuk, K. Holthoff, A. Konnerth. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA, 100, 7319-7324(2003).

    [12] M. Oheim, E. Beaurepaire, E. Chaigneau, J. Mertz, S. Charpak. Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J. Neurosci. Meth., 111, 29-37(2001).

    [13] R. Nitsch, E. E. Pohl, A. Smorodchenko, C. Infante-Duarte, O. Aktas, F. Zipp. Direct impact of T cells on neurons revealed by two-photon microscopy in living brian tissue. J. Neurosci., 24, 2458-2464(2004).

    [14] G. E. Stutzmann, F. M. LaFerla, I. Parker. Ca2+ signaling in mouse cortical neurons studied by two-photon imaging and photoreleased inositol triphosphate. J. Neurosci., 23, 758-765(2003).

    [15] N. Ji, J. Freeman, S. L. Smith. Technologies for imaging neural activity in large volumes. Nat. Neurosci., 19, 1154-1164(2016).

    [16] J. M. Squirrell, D. L. Wokosin, J. G. White, B. D. Bavister. Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat. Biotechnol., 17, 763-767(1999).

    [17] R. Cicchi, D. Kapsokalyvas, F. S. Pavone. Clinical nonlinear laser imaging of human Skin: A review. Biomed. Res. Int., 2014, 14(2014).

    [18] E. Yew, C. Rowlands, P. T. C. So. Application of multiphoton microscopy in dermatological studies: A mini-review. J. Innov. Opt. Health Sci., 7, 1330010(2014).

    [19] K. Konig, I. Riemann. High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. J. Biomed. Opt., 8, 432-439(2003).

    [20] B. R. Masters, P. T. C. So. Multi-photon excitation microscopy and confocal microscopy imaging of in vivo human skin: A comparison. Microsc. Microanal., 5, 282-289(1999).

    [21] B. R. Masters, P. T. C. So. Confocal microscopy and multi-photon excitation microscopy of human skin in vivo. Opt. Exp., 8, 2-10(2000).

    [22] B. R. Masters, P. T. C. So, E. Gratton. Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. Biophys. J., 72, 2405-2412(1997).

    [23] B. R. Masters, P. T. C. So, E. Gratton. Optical biopsy of in vivo human skin: Multi-photon excitation microscopy. Lasers Med. Sci., 13, 196-203(1998).

    [24] J. Condeelis, J. E. Segall. Intravital imaging of cell movement in tumours. Nat. Rev. Cancer, 3, 921-930(2003).

    [25] M. Lohela, Z. Werb. Intravital imaging of stromal cell dynamics in tumors. Curr. Opin. Gen. Dev., 20, 72-78(2010).

    [26] M. J. Miller, S. H. Wei, M. D. Cahalan, I. Parker. Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc. Natl. Acad. Sci., 100, 2604-2609(2003).

    [27] T. Honda, A. Otsuka, K. Kabashima. Novel insights into cutaneous immune systems revealed by in vivo imaging. Allergol. Int., 65, 228-234(2016).

    [28] J. X. Cheng, X. S. Xie. Coherent anti-Storkes Raman scattering microscopy: Instrumentation, theory and applications. J. Phys. Chem. B, 108, 827-840(2004).

    [29] C. Krafft, B. Dietzek, J. Popp. Raman and CARS microspectroscopy of cells and tissues. Analyst, 134, 1046-1057(2009).

    [30] C. L. Evans, X. S. Xie. Coherent anti-Stokes Raman scattering microscopy: Chemical imaging for biology and medicine. Annu. Rev. Anal. Chem., 1, 883-909(2008).

    [31] X. Nan, J.-X. Cheng, X. S. Xie. Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy. J. Lipid Res., 44, 2202-2208(2003).

    [32] J.-X. Cheng, L. D. Book, X. S. Xie. Polarization coherent anti-Stokes Raman scattering microscopy. Opt. Lett., 26, 1341-1343(2001).

    [33] E. O. Potma, W. P. de Boeij, P. J. van Haastert, D. A. Wiersma. Real-time visualization of intracellular hydrodynamics in single living cells. Proc. Natl. Acad. Sci., 98, 1577-1582(2001).

    [34] E. O. Potma, X. S. Xie. Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy. J. Raman Spectrosc., 34, 642-650(2003).

    [35] G. W. Wurpel, J. M. Schins, M. Müller. Direct measurement of chain order in single phospholipid mono-and bilayers with multiplex CARS. J. Phys. Chem. B, 108, 3400-3403(2004).

    [36] C. L. Evans, E. O. Potma, M. Puoris’ haag, D. Côté, C. P. Lin, X. S. Xie. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proc. Natl. Acad. Sci. USA, 102, 16807-16812(2005).

    [37] K. König, H. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, E. Büttner, W. Sterry, J. Lademann. Optical skin biopsies by clinical CARS and multiphoton fluorescence/SHG tomography. Laser Phys. Lett., 8, 465-468(2011).

    [38] J. Chen, A. Lee, J. Zhao, H. Wang, H. Lui, D. I. McLean, H. Zeng. Spectroscopic characterization and microscopic imaging of extracted and in situ cutaneous collagen and elastic tissue components under two-photon excitation. Skin Res. Technol., 15, 418-426(2009).

    [39] J. Chen, S. Zhuo, T. Luo, X. Jiang, J. Zhao. Spectral characteristics of autofluorescence and second harmonic generation from ex vivo human skin induced by femtosecond laser and visible lasers. Scanning, 28, 319-326(2006).

    [40] M. Shen, Y. Tian, S. P. Chong, J. Zhao, H. Zeng, S. Tang. Quantifying the backscattering of second harmonic generation in tissues with confocal multiphoton microscopy. J. Biomed. Opt., 18, 115003(2013).

    [41] M. Shen, J. Zhao, H. Zeng, S. Tang. Calibrating the measurement of wavelength-dependent second harmonic generation from biological tissues with a BaB(2)O(4) crystal. J. Biomed. Opt., 18, 031109(2013).

    [42] P. Stoller, K. M. Reiser, P. M. Celliers, A. M. Rubenchik. Polarization-modulated second harmonic generation in collagen. Biophys. J., 82, 3330-3342(2002).

    [43] M. Strupler, A. M. Pena, M. Hernest, P. L. Tharaux, J. L. Martin, E. Beaurepaire, M. C. Schanne-klein. Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Exp., 15, 4054-4065(2007).

    [44] S.-Y. Chen, H.-Y. Wu, C.-K. Sun. In vivo harmonic generation biopsy of human skin. J. Biomed. Opt., 14, 060505-060505-3(2009).

    [45] E. Dimitrow, I. Riemann, J. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. Konig, M. Kaatz. Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis. Exp. Dermatol., 18, 509-515(2009).

    [46] M. J. Koehler, A. Preller, P. Elsner, K. König, U. C. Hipler, M. Kaatz. Non-invasive evaluation of dermal elastosis by in vivo multiphoton tomography with autofluorescence lifetime measurements. Exp. Dermatol., 21, 48-51(2012).

    [47] K. Konig. Clinical multiphoton tomography. J. Biophoton., 1, 13-23(2008).

    [48] K. König. Clinical in vivo multiphoton FLIM tomography. Meth. Appl. Fluorescence, 8, 034002(2020).

    [49] F. Helmchen, W. Denk. Deep tissue two-photon microscopy. Nat. Meth., 2, 932-940(2005).

    [50] Y. Le Grand, A. Leray, T. Guilbert, C. Odin. Non-descanned versus descanned epifluorescence collection in two-photon microscopy: Experiments and Monte Carlo simulations. Opt. Commun., 281, 5480-5486(2008).

    [51] M. D. Young, J. J. Field, K. E. Sheetz, R. A. Bartels, J. Squier. A pragmatic guide to multiphoton microscope design. Adv. Opt. Photon., 7, 276-378(2015).

    [52] C. Lefort. A review of biomedical multiphoton microscopy and its laser sources. J. Phys. D. Appl. Phys., 50, 423001(2017).

    [53] J. P. Zinter, M. J. Levene. Maximizing fluorescence collection efficiency in multiphoton microscopy. Opt. Exp., 19, 15348-15362(2011).

    [54] C. R. Stoltzfus, A. Rebane. Optimizing ultrafast illumination for multiphoton-excited fluorescence imaging. Biomed. Opt. Exp., 7, 1768-1782(2016).

    [55] K. Koenig. Hybrid multiphoton multimodal tomography of in vivo human skin. IntraVital, 1, 11-26(2012).

    [56] M. D. Duncan, J. Reintjes, T. Manuccia. Scanning coherent anti-Stokes Raman microscope. Opt. Lett., 7, 350-352(1982).

    [57] A. Zumbusch, G. R. Holtom, X. S. Xie. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys. Rev. Lett., 82, 4142(1999).

    [58] E. O. Potma, D. J. Jones, J.-X. Cheng, X. S. Xie, J. Ye. High-sensitivity coherent anti-Stokes Raman scattering microscopy with two tightly synchronized picosecond lasers. Opt. Lett., 27, 1168-1170(2002).

    [59] M. Müller, J. M. Schins. Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy. J. Phys. Chem. B, 106, 3715-3723(2002).

    [60] J.-X. Cheng, A. Volkmer, L. D. Book, X. S. Xie. An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity. J. Phys. Chem. B, 105, 1277-1280(2001).

    [61] A. Volkmer, J.-X. Cheng, X. S. Xie. Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy. Phys. Rev. Lett., 87, 023901(2001).

    [62] S. Akhmanov, A. Bunkin, S. Ivanov, N. Koroteev. Coherent ellipsometry of Raman scattering of light. Sov. J. Exp. Theor. Phys. Lett., 25, 416(1977).

    [63] J. L. Oudar, R. W. Smith, Y. Shen. Polarization-sensitive coherent anti-Stokes Raman spectroscopy. Appl. Phys. Lett., 34, 758-760(1979).

    [64] R. Brakel, F. W. Schneider. Polarization CARS spectroscopy. Adv. Non-Linear Spectrosc., R. J. H. Clark and R. E. Hester, eds., 15, 149-193(1988).

    [65] A. Laubereau, W. Kaiser. Vibrational dynamics of liquids and solids investigated by picosecond light pulses. Rev. Mod. Phys., 50, 607(1978).

    [66] F. M. Kamga, M. G. Sceats. Pulse-sequenced coherent anti-Stokes Raman scattering spectroscopy: A method for suppression of the nonresonant background. Opt. Lett., 5, 126(1980).

    [67] G. I. Petrov, V. V. Yakovlev. Enhancing red-shifted white-light continuum generation in optical fibers for applications in nonlinear Raman microscopy. Opt. Exp., 13, 1299-1306(2005).

    [68] H. N. Paulsen, K. M. Hilligse, J. Thøgersen, S. R. Keiding, J. J. Larsen. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source. Opt. Lett., 28, 1123-1125(2003).

    [69] E. R. Andresen, H. N. Paulsen, V. Birkedal, J. Thøgersen, S. R. Keiding. Broadband multiplex coherent anti-Stokes Raman scattering microscopy employing photonic-crystal fibers. J. Opt. Soc. Am. B, 22, 1934-1938(2005).

    [70] A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, A. Stolow. Optimally chirped multimodal CARS microscopy based on a single Ti: sapphire oscillator. Opt. Exp., 17, 2984-2996(2009).

    [71] S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H. J. Röwert-Huber, J. Lademann, B. Dietzek, J. Popp. Multimodal mapping of human skin. Br. J. Dermatol., 169, 794-803(2013).

    [72] H. G. Breunig, R. Bückle, M. Kellner-Höfer, M. Weinigel, J. Lademann, W. Sterry, K. König. Combined in vivo multiphoton and CARS imaging of healthy and disease-affected human skin. Microsc. Res. Tech., 75, 492-498(2012).

    [73] M. Weinigel, H. Breunig, M. Kellner-Höfer, R. Bückle, M. Darvin, M. Klemp, J. Lademann, K. König. In vivo histology: Optical biopsies with chemical contrast using clinical multiphoton/coherent anti-Stokes Raman scattering tomography. Laser Phys. Lett., 11, 055601(2014).

    [74] S. Heuke, N. Vogler, T. Meyer, D. Akimov, F. Kluschke, H.-J. Röwert-Huber, J. Lademann, B. Dietzek, J. Popp. Detection and discrimination of non-melanoma skin cancer by multimodal imaging. Healthcare, 1, 64-83(2013).

    [75] K. König, H. G. Breunig, A. Batista, A. Schindele, M. Zieger, M. Kaatz. Translation of two-photon microscopy to the clinic: Multimodal multiphoton CARS tomography of in vivo human skin. J. Biomed. Opt., 25, 014515(2020).

    [76] W. R. Zipfel, R. M. Williams, W. W. Webb. Nonlinear magic: Multiphoton microscopy in the biosciences. Nat. Biotechnol., 21, 1369-1377(2003).

    [77] M. Schrader, U. G. Hofmann, S. W. Hell. Ultrathin fluorescent layers for monitoring the axial resolution in confocal and two-photon fluorescence microscopy. J. Microsc., 191, 135-140(1997).

    [78] B. Huang, M. Bates, X. Zhuang. Super resolution fluorescence microscopy. Annu. Rev. Biochem., 78, 993(2009).

    [79] J. McMullen, A. Kwan, R. Williams, W. Zipfel. Enhancing collection efficiency in large field of view multiphoton microscopy. J. Microsc., 241, 119-124(2011).

    [80] J. D. McMullen, W. R. Zipfel. A multiphoton objective design with incorporated beam splitter for enhanced fluorescence collection. Opt. Exp., 18, 5390-5398(2010).

    [81] P. S. Tsai, C. Mateo, J. J. Field, C. B. Schaffer, M. E. Anderson, D. Kleinfeld. Ultra-large field-of-view two-photon microscopy. Opt. Exp., 23, 13833-13847(2015).

    [82] J. N. Stirman, I. T. Smith, M. W. Kudenov, S. L. Smith. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat. Biotechnol., 34, 857-862(2016).

    [83] B. F. Grewe, F. F. Voigt, M. van’t Hoff, F. Helmchen. Fast two-layer two-photon imaging of neuronal cell populations using an electrically tunable lens. Biomed. Opt. Exp., 2, 2035-2046(2011).

    [84] M. Balu, H. Mikami, J. Hou, E. O. Potma, B. J. Tromberg. Large field of view multiphoton microscopy of human skin. Proc. SPIE 9712, Multiphoton Microscopy in the Biomedical Sciences XVI, 97121F(2016). http://dx.doi.org/10.1117/12.2216163

    [85] M. Balu, H. Mikami, J. Hou, E. O. Potma, B. J. Tromberg. Rapid mesoscale multiphoton microscopy of human skin. Biomed. Opt. Exp., 7, 4375-4387(2016).

    [86] A. Fast, A. Lal, A. F. Durkin, G. Lentsch, R. M. Harris, C. B. Zachary, A. K. Ganesan, M. Balu. Fast, large area multiphoton exoscope (FLAME) for macroscopic imaging with microscopic resolution of human skin. Sci. Rep., 10, 1-14(2020).

    [87] J. R. Vicente, A. Durkin, K. Shrestha, M. Balu. In vivo imaging with a fast large-area multiphoton exoscope (FLAME) captures the melanin distribution heterogeneity in human skin. Sci. Rep., 12, 1-10(2022).

    [88] K. H. Kim, C. Buehler, P. T. C. So. High-speed, two-photon scanning microscope. Appl. Opt., 38, 6004-6009(1999).

    [89] S. W. Chu, T. M. Liu, C. K. Sun, C. Y. Lin, H. J. Tsai. Real-time second harmonic-generation microscopy based on a 2-GHz repetition rate Ti:sapphire laser. Opt. Exp., 11, 933-938(2003).

    [90] G. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. Wade, B. Athey. Real-time two-photon confocal microscopy using a femtosecond, amplified Ti: sapphire system. J. Microsc., 181, 253-259(1996).

    [91] J. D. Lechleiter, D. T. Lin, I. Sieneart. Multi-photon laser scanning microscopy using an acoustic optical deflector. Biophys. J., 83, 2292-2299(2002).

    [92] J. Bewersdorf, R. Pick, S. W. Hell. Multifocal multiphoton microscopy. Opt. Lett., 23, 655-657(1998).

    [93] M. Kobayashi, K. Fujita, T. Kaneko, T. Takamatsu, O. Nakamura, S. Kawata. Second-harmonic-generation microscope with a microlens array scanner. Opt. Lett., 27, 1324-1326(2002).

    [94] K. Fujita, O. Nakamura, T. Kaneko, M. Oyamada, T. Takamatsu, S. Kawata. Confocal multipoint multiphoton excitation microscope with microlens and pinhole arrays. Opt. Commun., 174, 7-12(2000).

    [95] K. H. Kim, C. Buehler, K. Bahlmann, T. Ragan, W.-C. A. Lee, E. Nedivi, E. L. Heffer, S. Fantini, P. T. So. Multifocal multiphoton microscopy based on multianode photomultiplier tubes. Opt. Exp., 15, 11658-11678(2007).

    [96] K. Bahlmann, P. T. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, K. Bellve. Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz. Opt. Exp., 15, 10991-10998(2007).

    [97] J. W. Cha, E. Y. Yew, D. Kim, J. Subramanian, E. Nedivi, P. T. So. Non-descanned multifocal multiphoton microscopy with a multianode photomultiplier tube. AIP Adv., 5, 084802(2015).

    [98] G. Y. Fan, H. Fujisaki, A. Miyawaki, R. K. Tsay, R. Y. Tisen, M. H. Ellisman. Video-rate scanning two-photon excitation fluorescence microscopy and ratio imaging with cameleons. Biophys. J., 76, 2412-2420(1999).

    [99] A. Lee, H. Wang, Y. Yu, J. Zhao, S. Tang, H. Lui, D. I. McLean, H. Zeng. New multimodal multiphoton imaging and spectroscopy apparatus for dermatology. ECS Meet. Abs., MA2010-01, 1059(2010).

    [100] A. Lee, H. Wang, Y. Yu, S. Tang, J. Zhao, H. Lui, D. I. McLean, H. Zeng. In vivo video rate multiphoton microscopy imaging of human skin. Opt. Lett., 36, 2865-2867(2011).

    [101] H. Wang, A. M. D. Lee, Z. Frehlick, H. Lui, D. I. McLean, S. Tang, H. Zeng. Perfectly registered multiphoton and reflectance confocal video rate imaging of in vivo human skin. J. Biophoton., 6, 305-309(2013).

    [102] C. A. Combs, A. V. Smirnov, J. D. Riley, A. H. Gandjbakhche, J. R. Knutson, R. S. Balaban. Optimization of multiphoton excitation microscopy by total emission detection using a parabolic light reflector. J. Microsc., 228, 330-337(2007).

    [103] C. A. Combs, A. Smirnov, D. Chess, D. B. McGavern, J. L. Schroeder, J. Riley, S. S. Kang, M. LUGAR-HAMMER, A. Gandjbakhche, J. R. Knutson. Optimizing multiphoton fluorescence microscopy light collection from living tissue by noncontact total emission detection (epiTED). J. Microsc., 241, 153-161(2011).

    [104] C. A. Combs, A. Smirnov, B. Glancy, N. S. Karamzadeh, A. H. Gandjbakhche, G. Redford, K. Kilborn, J. R. Knutson, R. S. Balaban. Compact non-contact total emission detection for in vivo multiphoton excitation microscopy. J. Microsc., 253, 83-92(2014).

    [105] C. J. Engelbrecht, W. Göbel, F. Helmchen. Enhanced fluorescence signal in nonlinear microscopy through supplementary fiber-optic light collection. Opt. Exp., 17, 6421-6435(2009).

    [106] V. Crosignani, A. S. Dvornikov, E. Gratton. Enhancement of imaging depth in turbid media using a wide area detector. J. Biophoton., 4, 592-599(2011).

    [107] V. Crosignani, S. Jahid, A. Dvornikov, E. Gratton. Deep tissue imaging by enhanced photon collection. J. Innov. Opt. Health Sci., 7, 1450034(2014).

    [108] V. Crosignani, A. Dvornikov, J. S. Aguilar, C. Stringari, R. Edwards, W. W. Mantulin, E. Gratton. Deep tissue fluorescence imaging and in vivo biological applications. J. Biomed. Opt., 17, 116023(2012).

    [109] V. Crosignani, S. Jahid, A. S. Dvornikov, E. Gratton. A deep tissue fluorescence imaging system with enhanced SHG detection capabilities. Microsc. Res. Tech., 77, 368-373(2014).

    [110] A. Singh, J. D. McMullen, E. A. Doris, W. R. Zipfel. Comparison of objective lenses for multiphoton microscopy in turbid samples. Biomed. Opt. Exp., 6, 3113-3127(2015).

    [111] D. Vucinic, T. M. Jr. Bartol, T. J. Sejnowski. Hybrid reflecting objectives for functional multiphoton microscopy in turbid media. Opt. Lett., 31, 2447-2449(2006).

    [112] A. M. Pena, M. Strupler, T. Boulesteix, M. C. Schanne-Klein. Spectroscopic analysis of keratin endogenous signal for skin multiphoton microscopy. Opt. Exp., 13, 6268-6274(2005).

    [113] A. Zoumi, A. Yeh, B. J. Tromberg. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two photon excited fluorescence. Proc. Natl. Acad. Sci. USA, 99, 11014-11019(2002).

    [114] J. Chen, A. Lee, J. Zhao, H. Wang, H. Lui, D. I. McLean, H. Zeng. Spectroscopic characterization and microscopic imaging of extracted and in situ cutaneous collagen and elastin tissue components under two-photon excitation. Skin Res. Technol., 15, 418-426(2009).

    [115] S. Zhuo, J. Chen, T. Luo, D. Zou, J. Zhao. Multimode nonlinear optical imaging of the dermis in ex vivo human skin based on the combinatin of multichannel mode and lambda mode. Opt. Exp., 14, 7810-7820(2006).

    [116] Y. Jung, J. Tam, H. R. Jalian, R. R. Anderson, C. L. Evans. Longitudinal, 3D in vivo imaging of sebaceous glands by coherent anti-Stokes Raman scattering microscopy: Normal function and response to cryotherapy. J. Invest. Dermatol., 135, 39-44(2015).

    [117] S. J. Lin, S. H. Jee, J. K. C. , R. J. Wu, W. C. Lin, J. S. Chen, Y. H. Liao, C. J. Hsu, T. F. Tsai, Y. F. Chen, C. Y. Dong. Discrimination of basal cell carcinoma from normal dermal stroma by quantitative multiphoton imaging. Opt. Lett., 31, 2756-2758(2006).

    [118] J. Paoli, M. Smedh, A. M. Wennberg, M. B. Ericson. Multiphoton laser scanning microscopy on non-melanoma skin cancer: Morphologic features for future non-invasive diagnostics. J. Invest. Dermatol., 128, 1248-1255(2008).

    [119] R. Cicchi, D. Massi, S. Sestini, P. Carli, V. De Giorgi, T. Lotti, F. Pavone. Multidimensional non-linear laser imaging of Basal Cell Carcinoma. Opt. Exp., 15, 10135-10148(2007).

    [120] V. De Giorgi, D. Massi, S. Sestini, R. Cicchi, F. Pavone, T. Lotti. Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: First experiences. J. Eur. Acad. Dermatol. Venereol., 23, 314-316(2009).

    [121] S. Seidenari, F. Arginelli, S. Bassoli, J. Cautela, A. M. Cesinaro, M. Guanti, D. Guardoli, C. Magnoni, M. Manfredini, G. Ponti. Diagnosis of BCC by multiphoton laser tomography. Skin Res. Technol., 19, e297-e304(2013).

    [122] S. Seidenari, F. Arginelli, C. Dunsby, P. French, K. König, C. Magnoni, M. Manfredini, C. Talbot, G. Ponti. Multiphoton laser tomography and fluorescence lifetime imaging of basal cell carcinoma: Morphologic features for non-invasive diagnostics. Exp. Dermatol., 21, 831-836(2012).

    [123] S. Seidenari, F. Arginelli, C. Dunsby, P. M. French, K. König, C. Magnoni, C. Talbot, G. Ponti. Multiphoton laser tomography and fluorescence lifetime imaging of melanoma: Morphologic features and quantitative data for sensitive and specific non-invasive diagnostics. PLoS One, 8, e70682(2013).

    [124] R. Patalay, C. Talbot, Y. Alexandrov, M. O. Lenz, S. Kumar, S. Warren, I. Munro, M. A. Neil, K. König, P. M. French. Multiphoton multispectral fluorescence lifetime tomography for the evaluation of basal cell carcinomas. PLoS One, 7, e43460(2012).

    [125] M. Manfredini, F. Arginelli, C. Dunsby, P. French, C. Talbot, K. König, G. Pellacani, G. Ponti, S. Seidenari. High-resolution imaging of basal cell carcinoma: A comparison between multiphoton microscopy with fluorescence lifetime imaging and reflectance confocal microscopy. Skin Res. Technol., 19, e433-e443(2013).

    [126] M. Balu, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, B. J. Tromberg, K. M. Kelly. In vivo multiphoton microscopy of basal cell carcinoma. JAMA Dermatol., 151, 1068-1074(2015).

    [127] F. B. Legesse, A. Medyukhina, S. Heuke, J. Popp. Texture analysis and classification in coherent anti-Stokes Raman scattering (CARS) microscopy images for automated detection of skin cancer. Comput. Med. Imag. Graph., 43, 36-43(2015).

    [128] M. Klemp, M. C. Meinke, M. Weinigel, H. J. Röwert-Huber, K. König, M. Ulrich, J. Lademann, M. E. Darvin. Comparison of morphologic criteria for actinic keratosis and squamous cell carcinoma using in vivo multiphoton tomography. Exp. Dermatol., 25, 218-222(2016).

    [129] E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. Konig, P. Elsner, M. Kaatz. Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. J. Invest. Dermatol., 129, 1752-1758(2009).

    [130] K. Hoffmann, M. Stucker, P. Altmeyer, K. Teuchner, D. Leupold. Selective femotosecond pulse-excitation of melanin fluorescence in tissue. J. Invest. Dermatol., 116, 629-630(2001).

    [131] M. Balu, K. M. Kelly, C. B. Zachary, R. M. Harris, T. B. Krasieva, K. König, A. J. Durkin, B. J. Tromberg. Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy. Cancer Res., 74, 2688-2697(2014).

    [132] H. Wang, S. Osseiran, V. Igras, A. J. Nichols, E. M. Roider, J. Pruessner, H. Tsao, D. E. Fisher, C. L. Evans. In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin. Sci. Rep., 6, 37986(2016).

    [133] G. Lentsch, M. Balu, J. Williams, S. Lee, R. M. Harris, K. König, A. Ganesan, B. J. Tromberg, N. Nair, U. Santhanam. In vivo multiphoton microscopy of melasma. Pigm. Cell Melanoma Res., 32, 403-411(2019).

    [134] G. Lentsch, M. Valdebran, I. Saknite, J. Smith, K. G. Linden, K. König, R. J. Barr, R. M. Harris, B. J. Tromberg, A. K. Ganesan. Non-invasive optical biopsy by multiphoton microscopy identifies the live morphology of common melanocytic nevi. Pigm. Cell Melanoma Res., 33, 869-877(2020).

    [135] G. Chen, J. Chen, S. Zhuo, S. Xiong, H. Zeng, X. Jiang, R. Chen, S. Xie. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation. Br. J. Dermatol., 161, 48-55(2009).

    [136] V. Da Costa, R. Wei, R. Lim, C. H. Sun, J. J. Brown, B. J. Wong. Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy. Arch. Facial Plastic Surg., 10, 38-43(2008).

    [137] M. B. Brewer, A. Yeh, B. A. Torkian, C. H. Sun, B. J. Tromberg, B. J. Wong. Multiphoton imaging of excised normal skin and keloid scar: Preliminary investigations. Proc. SPIE, 5312, 204-208(2004).

    [138] K. Lu, S. Zhuo, Z. Hong, G. Chen, X. Jiang, L. Zheng, J. Chen. Non-linear spectral imaging microscopy studies of human hypertrophic scar. J. Innov. Opt. Health Sci., 2, 61-66(2009).

    [139] X. Zhu, S. Zhuo, L. Zheng, K. Lu, X. Jiang, J. Chen, B. Lin. Quantified characterization of human cutaneous normal scar using multiphoton microscopy. J. Biophoton., 3, 108-116(2010).

    [140] X. Zhu, S. Zhuo, L. Zheng, X. Jiang, J. Chen, B. Lin. Quantification of scar margin in keloid different from atrophic scar by multiphoton microscopic imaging. Scanning, 33, 195-200(2011).

    [141] K. Lu, J. Chen, S. Zhuo, L. Zheng, X. Jiang, X. Zhu, J. Zhao. Multiphoton laser scanning microscopy of localized scleroderma. Skin Res. Technol., 15, 489-495(2009).

    [142] J. H. Lee, S. Y. Chen, C. H. Yu, S. W. Chu, L. F. Wang, C. K. Sun, B. L. Chiang. Noninvasive in vitro and in vivo assessment of epidermal hyperkeratosis and dermal fibrosis in atopic dermatitis. J. Biomed. Opt., 14, 014008(2009).

    [143] A. Uchugonova, R. M. Hoffman, M. Weinigel, K. Koenig. Watching stem cells in the skin of living mice noninvasively. Cell Cycle, 10, 2017-2020(2011).

    [144] A. Uchugonova, W. Cao, R. M. Hoffman, K. Koenig. Comparison of label-free and GFP multiphoton imaging of hair follicle-associated pluripotent (HAP) stem cells in mouse whiskers. Cell Cycle, 14, 3430-3433(2015).

    [145] D. Kapsokalyvas, R. Cicchi, N. Bruscino, D. Alfieri, F. Prignano, D. Massi, T. Lotti, F. S. Pavone. In-vivo imaging of psoriatic lesions with polarization multispectral dermoscopy and multiphoton microscopy. Biomed. Opt. Exp., 5, 2405-2419(2014).

    [146] M. J. Koehler, K. Konig, P. Elsner, R. Buckle, M. Kaatz. In vivo assessment of human skin aging by multiphoton laser scanning tomography. Opt. Lett., 31, 2879-2881(2006).

    [147] M. J. Koehler, A. Preller, N. Kindler, P. Elsner, K. König, R. Bückle, M. Kaatz. Intrinsic, solar and sunbed-induced skin aging measured in vivo by multiphoton laser tomography and biophysical methods. Skin Res. Technol., 15, 357-363(2009).

    [148] S. Puschmann, C.-D. Rahn, H. Wenck, S. Gallinat, F. Fischer. Approach to quantify human dermal skin aging using multiphoton laser scanning microscopy. J. Biomed. Opt., 17, 0360051-0360056(2012).

    [149] M. J. Koehler, S. Hahn, A. Preller, P. Elsner, M. Ziemer, A. Bauer, K. Konig, R. Buckle, J. W. Fluhr, M. Kaatz. Morphological skin ageing criteria by multiphoton laser scanning tomography: Non-invasive in vivo scoring of the dermal fibre network. Exp. Dermatol., 17, 519-523(2008).

    [150] S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee. Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy. Opt. Lett., 30, 2275-2277(2005).

    [151] S. Zhuo, X. Zhu, J. Chen, S. Xie. Quantitative biomarkers of human skin photoaging based on intrinsic second harmonic generation signal. Scanning, 35, 273-276(2013).

    [152] S. Wu, H. Li, H. Yang, X. Zhang, Z. Li, S. Xu. Quantitative analysis on collagen morphology in aging skin based on multiphoton microscopy. J. Biomed. Opt., 16, 040502–040502-3(2011).

    [153] K. Sugata, O. Osanai, T. Sano, Y. Takema. Evaluation of photoaging in facial skin by multiphoton laser scanning microscopy. Skin Res. Technol., 17, 1-3(2011).

    [154] H. Wang, T. Shyr, M. J. Fevola, G. O. Cula, G. N. Stamatas. Age-related morphological changes of the dermal matrix in human skin documented in vivo by multiphoton microscopy. J. Biomed. Opt., 23, 030501(2018).

    [155] A.-M. Pena, T. Baldeweck, E. Decencière, S. Koudoro, S. Victorin, E. Raynaud, B. Ngo, P. Bastien, S. Brizion, E. Tancrède-Bohin. In vivo multiphoton multiparametric 3D quantification of human skin aging on forearm and face. Sci. Rep., 12, 1-19(2022).

    [156] B. Yu, C.-Y. Dong, P. T. C. So, D. Blankschtein, R. Langer. In vitro visualization and quantification of oleic acid induced changes in transdermal transport using two-photon fluorescence microscopy. J. Invest. Dermatol., 117, 16-25(2001).

    [157] B. Yu, K. Hean Kim, P. T. C. So, D. Blankschtein, R. Langer. Topographic heterogeneity in transdermal transport revealed by high-speed two-photon microscopy: Determination of representative skin sample sizes. J. Invest. Dermatol., 118, 1085-1088(2002).

    [158] B. Yu, K. H. Kim, P. T. C. So, D. Blankschtein, R. Langer. Visualization of oleic acid-induced transdermal diffusion pathways using two-photon fluorescence microscopy. J. Invest. Dermatol., 120, 448-455(2003).

    [159] K. Konig, J. Ehlers, F. Stracke, I. Riemann. In vivo drug screening in human skin using femtosecond laser multiphoton tomography. Skin Pharmacol. Physiol., 19, 78-88(2006).

    [160] T. Richter, C. Peuckert, M. Sattler, K. Konig, I. Riemann, U. Hintze, K. P. Wittern, R. Wiesendanger, R. Wepf. Dead but highly dynamic - the stratum corneum is divided into three hydration zones. Skin Pharmacol. Physiol., 17, 246-257(2004).

    [161] A. J. Mulholland, M. A. F. Kendall, N. White, B. J. Bellhouse. Characterization of powdered epidermal vaccine delivery with multiphoton microscopy. Phys. Med. Biol., 49, 5043-5058(2004).

    [162] B. S. Grewal, A. Naik, W. J. Irwin, G. Gooris, C. J. de Grauw, H. G. Gerritsen, J. A. Bouwsra. Transdermal macromolecular delivery: Real-time visualization of iontophoretic and chemically enhanced transport using two-photon excitation microscopy. Pharm. Res., 17, 788-795(2000).

    [163] J. Bender, C. Simonsson, M. Smedh, S. Engstrom, M. B. Ericson. Lipid cubic phases in topic drug delivery: Visualization of skin distribution using two-photon microscopy. J. Control. Release, 129, 163-169(2008).

    [164] F. Stracke, B. Weiss, C.-M. Lehr, K. Konig, U. F. Schaefer, M. Schneider. Multiphoton microscopy for the investigation of dermal penetration of nanoparticle-borne drugs. J. Invest. Dermatol., 126, 2224-2233(2006).

    [165] K. Schenke-Layland, I. Riemann, O. Damour, U. A. Stock, K. Konig. Two-photon microscopes and in vivo multiphoton tomographs-powerful diagnositc tools for tissue engineering and drug delivery. Adv. Drug Deliv. Rev., 58, 878-896(2006).

    [166] J. N. Lee, S. H. Jee, C. C. Chan, W. Lo, C. Y. Dong, S. J. Lin. The effects of depilatory agents as penetration enhancers on human stratum corneum structures. J. Invest. Dermatol., 128, 2240-2247(2008).

    [167] B. Sarri, X. Chen, R. Canonge, S. Grégoire, F. Formanek, J.-B. Galey, A. Potter, T. Bornschlögl, H. Rigneault. In vivo quantitative molecular absorption of glycerol in human skin using coherent anti-Stokes Raman scattering (CARS) and two-photon auto-fluorescence. J. Control. Release, 308, 190-196(2019).

    [168] T. H. Tsai, S. H. Jee, J. Y. Chan, J. N. Lee, W. R. Lee, C. Y. Dong. Visualizing laser-skin interaction in vivo by multiphoton microscopy. J. Biomed. Opt., 14, 024034(2009).

    [169] M. Koehler, K. Kellner, U. C. Hipler, M. Kaatz. Acute UVB-induced epidermal changes assessed by multiphoton laser tomography. Skin Res. Technol., 21, 137-143(2015).

    [170] W. H. Jang, S. Shim, T. Wang, Y. Yoon, W.-S. Jang, J. K. Myung, S. Park, K. H. Kim. In vivo characterization of early-stage radiation skin injury in a mouse model by two-photon microscopy. Sci. Rep., 6, 19216(2016).

    [171] G. Tian, H. Lui, J. Zhao, Z. Wu, S. Kalia, V. Richer, I. Seo, H. Ouyang, H. Zeng. Tracking cellular dynamics of human skin responses to UV exposure using in vivo multimodal microscopy (Conference Presentation). Proc. SPIE, 10851, 108510S(2019).

    [172] F. A. Navarro, P. T. C. So, R. Nirmalan, N. Kropf, F. Sakaguchi, C. S. Park, H. B. Lee, D. P. Orgill. Two-photon confocal microscopy: A nondestructive method for studying wound healing. Plast. Reconstr. Surg., 114, 121-128(2004).

    [173] F. A. Navarro, P. T. C. So, A. Driessen, N. Kropf, C. S. Park, J. C. Huertas, H. B. Lee, D. P. Orgill. Two photon confocal microscopy in wound healing. Proc. SPIE, 4262, 27-40(2001).

    [174] A. Yeh, B. Kao, W. G. Jung, Z. Chen, J. S. Nelson, B. J. Tromberg. Imaging wound healing using optical coherence tomography and multiphoton microscopy in an in vitro skin-equivalent tissue model. J. Biomed. Opt., 9, 248-253(2004).

    [175] B. A. Torkian, A. Yeh, R. Engel, C. H. Sun, B. J. Tromberg, J. F. Wong. Modeling aberrant wound healing using tissue-engineered skin constructs and multiphoton microscopy. Arch. Facial Plast. Surg., 6, 180-187(2004).

    [176] J. Li, M. N. Wilson, A. J. Bower, M. Marjanovic, E. J. Chaney, R. Barkalifa, S. A. Boppart. Video-rate multimodal multiphoton imaging and three-dimensional characterization of cellular dynamics in wounded skin. J. Innov. Opt. Health Sci., 13, 2050007(2020).

    [177] W. J. Mulholland, E. A. H. Arbuthnott, B. J. Bellhouse, J. F. Cornhill, J. M. Austyn, M. A. F. Kendall, Z. Cui, U. K. Tirlapur. Multiphoton high-resolution 3D imaging of Langerhans cells and keratinocytes in the mouse skin model adopted for epidermal powdered immunization. J. Invest. Dermatol., 126, 1541-1548(2006).

    [178] R. N. Germain, M. J. Miller, M. L. Dustin, M. C. Nussenzweig. Dynamic imaging of the immune system: Progress, pitfalls and promise. Nat. Rev., 6, 497-507(2006).

    [179] M. J. Miller, S. H. Wei, I. Parker, M. D. Cahalan. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science, 296, 1869-1873(2002).

    [180] B. Roediger, L. G. Ng, A. L. Smith, B. F. de St Groth, W. Weninger. Visualizing dendritic cell migration within the skin. Histochem. Cell Biol., 130, 1131-1146(2008).

    [181] J. L. Li, C. C. Goh, J. L. Keeble, J. S. Qin, B. Roediger, R. Jain, Y. Wang, W. K. Chew, W. Weninger, L. G. Ng. Intravital multiphoton imaging of immune responses in the mouse ear skin. Nat. Protoc., 7, 221-234(2012).

    [182] P. L. Tong, B. Roediger, N. Kolesnikoff, M. Biro, S. S. Tay, R. Jain, L. E. Shaw, M. A. Grimbaldeston, W. Weninger. The skin immune atlas: Three-dimensional analysis of cutaneous leukocyte subsets by multiphoton microscopy. J. Invest. Dermatol., 135, 84-93(2015).

    [183] X.-N. Wang, N. McGovern, M. Gunawan, C. Richardson, M. Windebank, T.-W. Siah, H.-Y. Lim, K. Fink, J. L. Y. Li, L. G. Ng. A three-dimensional atlas of human dermal leukocytes, lymphatics, and blood vessels. J. Invest. Dermatol., 134, 965-974(2014).

    [184] N. McGovern, A. Schlitzer, M. Gunawan, L. Jardine, A. Shin, E. Poyner, K. Green, R. Dickinson, X.-N. Wang, D. Low. Human dermal CD14+ cells are a transient population of monocyte-derived macrophages. Immunity, 41, 465-477(2014).

    [185] N. McGovern, A. Schlitzer, M. Gunawan, L. Jardine, A. Shin, E. Poyner, K. Green, R. Dickinson, X.-N. Wang, D. Low. Population of monocyte-derived macrophages. Immunity, 42, 391(2015).

    [186] M. J. Pittet, R. Weissleder. Intravital imaging. Cell, 147, 983-991(2011).

    [187] K. Konig, H. Liang, M. W. Berns, B. J. Tromberg. Cell damage by near-IR microbeams. Nature, 377, 20-21(1995).

    [188] K. Konig, H. Liang, M. W. Berns, B. J. Tromberg. Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption. Opt. Lett., 21, 1090-1092(1996).

    [189] K. Konig, P. T. C. So, W. W. Mantulin, E. Gratton. Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes. Opt. Lett., 22, 135-136(1997).

    [190] K. Konig, T. W. Becker, P. Fischer, I. Riemann, K. J. Halbhuber. Pulse-length dependence of cellular response to intense near-infrared laser pulse in multiphoton microscopes. Opt. Lett., 24, 113-115(1999).

    [191] C. H. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, H. J. Tsai. Higher harmonic generation microscopy for developmental biology. J. Struct. Biol., 147, 19-30(2004).

    [192] I. H. Chen, S. W. Chu, C. K. Sun, B. L. Lin, P. C. Cheng. Wavelength dependenct damage in biological multi-photon confocal microscopy: A micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources. Opt. Quantum. Electron., 34, 1251-1266(2002).

    [193] B. R. Masters, P. T. C. So, C. Buehler, N. Barry, J. D. Sutin, W. W. Mantulin, E. Gratton. Mitigating thermal mechanical damage potential during two-photon dermal imaging. J. Biomed. Opt., 9, 1265-1270(2004).

    [194] A. Vogel, J. Noack, G. Huttmann, G. Paltauf. Femtosecond-laser-produced low-density plasmas in transparent biological media: A tool for the creation of chemical, thermal and thermomechanical effects below the optical breakdown threshold. Proc. SPIE, 4633A, 1-15(2002).

    [195] A. Hopt, E. Neher. Highly nonlinear photodamage in two-photon fluorescence microscopy. Biophys. J., 80, 2029-2036(2001).

    [196] F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, R. Wepf. Risk estimation of skin damage due to ultrashort pulsed, focused near-infrared laser irradiation at 800nm. J. Biomed. Opt., 13, 041320(2008).

    [197] F. Fischer, B. Volkmer, S. Puschmann, R. Greinert, W. Breitbart, J. Kiefer, R. Wepf. Assessing the risk of skin damage due to femtosecond laser irradiation. J. Biophoton., 1, 470-477(2008).

    [198] H. Wang, S. Zandi, A. Lee, J. Zhao, H. Lui, D. I. McLean, H. Zeng. Imaging directed photothermolysis through two-photon absorption demonstrated on mouse skin–a potential novel tool for highly targeted skin treatment. J. Biophoton., 7, 534-541(2014).

    [199] Y. Huang, H. Lui, J. Zhao, Z. Wu, H. Zeng. Precise spatially selective photothermolysis using modulated femtosecond lasers and real-time multimodal microscopy monitoring. Theranostics, 7, 513-522(2017).

    [200] Y. Huang, Z. Wu, H. Lui, J. Zhao, S. Xie, H. Zeng. Precise closure of single blood vessels via multiphoton absorption-based photothermolysis. Sci. Adv., 5, eaan9388(2019).

    [201] S. Tang, T. B. Krasieva, Z. Chen, B. J. Tromberg. Combined multiphoton microscopy and optical coherence tomography using a 12-fs broadband source. J. Biomed. Opt., 11, 020502(2006).

    [202] S. Tang, C. H. Sun, T. B. Krasieva, Z. Chen, B. J. Tromberg. Imaging subcellular scattering contrast by using combined optical coherence and multiphoton microscopy. Opt. Lett., 32, 503-505(2007).

    [203] Y. Yu, A. Lee, H. Wang, J. Zhao, S. Tang, H. Lui, D. I. McLean, H. Zeng. New multimodal multiphoton imaging and spectroscopy apparatus for dermatology. Proc. SPIE, 7548, 75480N(2010).

    [204] S. Tang, J. Liu, T. B. Krasieva, Z. Chen, B. J. Tromberg. Developing compact multiphoton system using femtosecond fiber lasers. J. Biomed. Opt., 14, 030508(2009).

    [205] S. Tang, W. Jung, D. McCormick, T. Xie, J. Su, Y.-C. Ahn, B. J. Tromberg, Z. Chen. Design and implementation of fiber-based multiphoton endoscopy with microelectromechanical systems scanning. J. Biomed. Opt., 14, 034005(2009).

    [206] H. Bao, J. Allen, R. Pattie, R. Vance, M. Gu. Fast handheld two-photon fluorescence microendoscope with a 475um×475um field of view for in vivo imaging. Opt. Lett., 33, 1333-1335(2008).

    [207] G. Liu, T. Xie, I. V. Tomov, J. Su, L. Yu, J. Zhang, B. J. Tromberg, Z. Chen. Rotational multiphoton endoscopy with a 1um fiber laser system. Opt. Lett., 34, 2249(2009).

    [208] Y. Wu, Y. Leng, J. Xi, X. Li. Scanning all-fiber-optic endomicroscopy system for 3D nonlinear optical imaging of biological tissues. Opt. Exp., 17, 7907-7915(2009).

    [209] Y. Zhao, M. Sheng, L. Huang, S. Tang. Design of a fiber-optic multiphoton microscopy handheld probe. Biomed. Opt. Exp., 7, 3425-3437(2016).

    Jianhua Zhao, Yuan Zhao, Zhenguo Wu, Yunxian Tian, Haishan Zeng. Nonlinear optical microscopy for skin in vivo: Basics, development and applications[J]. Journal of Innovative Optical Health Sciences, 2023, 16(1): 2230018
    Download Citation