• Laser & Optoelectronics Progress
  • Vol. 56, Issue 20, 202409 (2019)
Lin Yang, Zhiyong Duan, Liuhong Ma, and Mengke Li*
Author Affiliations
  • School of Physical Engineering, Zhengzhou University, Zhengzhou, Henan 450000, China
  • show less
    DOI: 10.3788/LOP56.202409 Cite this Article Set citation alerts
    Lin Yang, Zhiyong Duan, Liuhong Ma, Mengke Li. Surface Plasmon Polariton Nanolasers[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202409 Copy Citation Text show less
    References

    [1] Ning C Z. Semiconductor nanolasers[J]. Progress in Physics, 31, 145-160(2011).

    [2] Wurtz G A, Pollard R, Zayats A V. Optical bistability in nonlinear surface-plasmon polaritonic crystals[J]. Physical Review Letters, 97, 057402(2006). http://www.ncbi.nlm.nih.gov/pubmed/17026140

    [3] Pan D, Wei H, Xu H X. Optical interferometric logic gates based on metal slot waveguide network realizing whole fundamental logic operations[J]. Optics Express, 21, 9556-9562(2013). http://www.opticsinfobase.org/abstract.cfm?uri=oe-21-8-9556

    [4] Shih M H. Small and fast plasmonic modulator[J]. Nature Photonics, 8, 171-172(2014).

    [5] Arghir I, Spasic D, Verlinden B E et al. Improved surface plasmon resonance biosensing using silanized optical fibers[J]. Sensors and Actuators B: Chemical, 216, 518-526(2015). http://www.sciencedirect.com/science/article/pii/S0925400515005213

    [6] Bombarová K, Chlpík J, Cirák J. Surface plasmon resonance ellipsometry based biosensor for the investigation of biomolecular interactions[J]. Materials Today: Proceedings, 2, 70-76(2015). http://www.sciencedirect.com/science/article/pii/S2214785315000115

    [7] Atwater H A, Polman A. Plasmonics for improved photovoltaic devices[J]. Nature Materials, 9, 205-213(2010). http://www.worldscientific.com/doi/abs/10.1142/9789814317665_0001?mi=6c98ks&af=R&Contrib=Polman%2C+A&content=articlesChapters&countTerms=true&target=default

    [8] Yin J, Chen Y G. Coupling surface plasmon polaritons into beams in free space[J]. Laser & Optoelectronics Progress, 54, 042401(2017).

    [9] Feng D D, Li Z Q, Yue Z et al. Hybrid surface plasmonic nanolaser with three dimensional optical field confinement[J]. Chinese Journal of Lasers, 44, 1001005(2017).

    [10] Gu B Y. Surface plasmon subwavelength optics: principles and novel effects[J]. Physics, 36, 280-287(2007).

    [11] Wang Z B, Dong W. Hybrid surface plasmonic nano-laser at communication wavelength[J]. Chinese Journal of Lasers, 45, 0401013(2018).

    [12] Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems[J]. Physical Review Letters, 90, 027402(2003). http://www.ncbi.nlm.nih.gov/pubmed/12570577/

    [13] Noginov M A, Zhu G, Belgrave A M et al. Demonstration of a spaser-based nanolaser[J]. Nature, 460, 1110-1112(2009). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000020000010000032000001&idtype=cvips&gifs=Yes

    [14] Oulton R F, Sorger V J, Genov D A et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics, 2, 496-500(2008). http://www.nature.com/nphoton/journal/v2/n8/abs/nphoton.2008.131.html

    [15] Oulton R F, Sorger V J, Zentgraf T et al. Plasmon lasers at deep subwavelength scale[J]. Nature, 461, 629-632(2009). http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature08364.html

    [16] Lei J G, Liu T H, Lin J Q et al. New applications of surface plasmon polaritons[J]. Chinese Journal of Optics and Applied Optics, 3, 432-439(2010).

    [17] Lu Y J, Kim J, Chen H Y et al. Plasmonic nanolaser using epitaxially grown silver film[J]. Science, 337, 450-453(2012). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6325979

    [18] Chou Y H, Hong K B, Chung Y C et al. Metal for plasmonic ultraviolet laser: Al or Ag?[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 4601907(2017). http://ieeexplore.ieee.org/document/8025383/

    [19] Tao T, Zhi T, Liu B et al. Manipulable and hybridized, ultralow-threshold lasing in a plasmonic laser using elliptical InGaN/GaN nanorods[J]. Advanced Functional Materials, 27, 1703198(2017). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201703198/full

    [20] Hill M T, Oei Y S, Smalbrugge B et al. Lasing in metallic-coated nanocavities[J]. Nature Photonics, 1, 589-594(2007). http://www.nature.com/nphoton/journal/v1/n10/pubmed/nphoton.2007.171.html

    [21] Nezhad M P, Simic A, Bondarenko O et al. Room-temperature subwavelength metallo-dielectric lasers[J]. Nature Photonics, 4, 395-399(2010).

    [22] Kwon S H, Kang J H, Seassal C et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity[J]. Nano Letters, 10, 3679-3683(2010). http://europepmc.org/abstract/med/20704325

    [23] Yu K, Lakhani A, Wu M C. Subwavelength metal-optic semiconductor nanopatch lasers[J]. Optics Express, 18, 8790-8799(2010). http://europepmc.org/abstract/MED/20588723

    [24] Hill M T, Marell M. Leong E S P, et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides[J]. Optics Express, 17, 11107-11112(2009). http://www.ncbi.nlm.nih.gov/pubmed/19550510

    [25] Kim M K, Lakhani A M, Wu M C. Efficient waveguide-coupling of metal-clad nanolaser cavities[J]. Optics Express, 19, 23504-23512(2011). http://www.opticsinfobase.org/abstract.cfm?URI=oe-19-23-23504

    [26] Matsudaira A, Lu C Y. O’Brien T, et al. Metal-cavity quantum-dot lasers with enhanced thermal performance[J]. Optics Letters, 37, 3297-3299(2012).

    [27] Tan Y, Zhang H, Zhao C J et al. Bi2Se3Q-switched Nd∶YAG ceramic waveguide laser[J]. Optics Letters, 40, 637-640(2015).

    [28] Tan Y, Guo Z N, Ma L N et al. Q-switched waveguide laser based on two-dimensional semiconducting materials: tungsten disulfide and black phosphorous[J]. Optics Express, 24, 2858-2866(2016). http://www.ncbi.nlm.nih.gov/pubmed/26906854

    [29] Chen X, Wang Y, Xiang Y J et al. A broadband optical modulator based on a graphene hybrid plasmonic waveguide[J]. Journal of Lightwave Technology, 34, 4948-4953(2016). http://ieeexplore.ieee.org/document/7574340/

    [30] Xu Z J, Zhu J, Xu W J et al. Novel graphene enhancement nanolaser based on hybrid plasmonic waveguides at optical communication wavelength[J]. Chinese Physics B, 27, 088104(2018). http://en.cnki.com.cn/Article_en/CJFDTotal-ZGWL201808008.htm

    [31] Bian Y S, Zheng Z, Zhao X et al. Nanowire based hybrid plasmonic structures for low-threshold lasing at the subwavelength scale[J]. Optics Communications, 287, 245-249(2013). http://www.sciencedirect.com/science/article/pii/S0030401812010516

    [32] Bian Y S, Zheng Z, Liu Y et al. Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides[J]. IEEE Photonics Technology Letters, 23, 884-886(2011). http://ieeexplore.ieee.org/document/5753919/

    [33] Akahane Y, Asano T, Song B S et al. High-Q photonic nanocavity in a two-dimensional photonic crystal[J]. Nature, 425, 944-947(2003). http://www.ncbi.nlm.nih.gov/pubmed/14586465

    [34] Sanvitto D, Daraei A, Tahraoui A et al. Observation of ultrahigh quality factor in a semiconductor microcavity[J]. Applied Physics Letters, 86, 191109(2005). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4876926

    [35] Ma R M, Oulton R F, Sorger V J et al. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection[J]. Nature Materials, 10, 110-113(2011). http://meetings.aps.org/Meeting/MAR12/Event/164720

    [36] Bo F, Wang X O, Li Y et al. Mode characteristics of silver-coated inverted-wedge silica microdisks[J]. Science China Physics, Mechanics & Astronomy, 58, 114207(2015). http://link.springer.com/article/10.1007/s11433-015-5722-3

    [37] Xiang Y, Song Y J. Double anticrossing coupling in a single metal-clad microcapillary[J]. IEEE Photonics Journal, 10, 5700409(2018). http://ieeexplore.ieee.org/document/8351930/

    Lin Yang, Zhiyong Duan, Liuhong Ma, Mengke Li. Surface Plasmon Polariton Nanolasers[J]. Laser & Optoelectronics Progress, 2019, 56(20): 202409
    Download Citation