• Opto-Electronic Engineering
  • Vol. 46, Issue 12, 190140 (2019)
Hui Qiannan1, Duan Cunli1、*, Feng Bin2, Wang Fan1, and Guo Rongli1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.190140 Cite this Article
    Hui Qiannan, Duan Cunli, Feng Bin, Wang Fan, Guo Rongli. Study of low-noise phase-shifting digital holographic microscopy using a long working distance objective[J]. Opto-Electronic Engineering, 2019, 46(12): 190140 Copy Citation Text show less
    References

    [1] Zhang Y Y, Zhao J L, Di J L, et al. Real-time monitoring of the solution concentration variation during the crystallization process of protein-lysozyme by using digital holographic interferometry[J]. Optics Express, 2012, 20(16): 18415–18421.

    [2] Min J W, Yao B L, Ketelhut S, et al. Simple and fast spectral domain algorithm for quantitative phase imaging of living cells with digital holographic microscopy[J]. Optics Letters, 2017, 42(2): 227–230.

    [3] Zhou Z R. Phase-shifting value extraction on digital holography with single phase-shifting operation[J]. Opto-Electronic Engineering, 2009, 36(7): 117–120.

    [4] Zheng J J, Zuo C, Gao P, et al. Dual-mode phase and fluorescence imaging with a confocal laser scanning microscope[J]. Optics Letters, 2018, 43(22): 5689–5692.

    [5] Yue Q Y, Cheng Z J, Han L, et al. One-shot time-resolved holographic polarization microscopy for imaging laser-induced ultrafast phenomena[J]. Optics Express, 2017, 25(13): 14182–14191.

    [6] Xue L, Wang S Y, Yan K D, et al. Fast pixel shifting phase unwrapping algorithm in quantitative interferometric microscopy[J]. Chinese Optics Letters, 2014, 12(7): 071801.

    [7] Fan F, Li J X, Song X F, et al. High accuracy phase reconstruction of digital hologram by Hilbert transform[J]. Acta Physica Sinica, 2014, 63(19): 194207.

    [8] Tian P, Yan W, Li F X, et al. Biology microscopy using well-distributed sphere digital in-line holography[J]. Opto-Electronic Engineering, 2019, 46(1): 180110.

    [9] Wang Y X, Wang D Y, Zhao J, et al. 3D profile measurement for micro-optical component by using digital holographic microscopy[J]. Acta Optica Sinica, 2011, 31(4): 0412003.

    [10] Zhang Q, Xu X F, Yuan H G, et al. Phase-shift extraction and wave reconstruction in four-step phase-shifting interferometry[J]. Opto-Electronic Engineering, 2011, 38(8): 139–144.

    [11] Wang F P, Deng S G, Zhang X Z, et al. Processing experiments of digital in-line holographic video[J]. Opto-Electronic Engineering, 2014, 41(6): 81–86.

    [12] Deng H, Zhang R Z, Sun N C. Suppression situation of incoherent superposition of laser beams on speckle noise[J]. Acta Optica Sinica, 2016, 36(1): 0129002.

    [13] Xiao W, Wang Q W, Pan F. Suppression of coherent noise by wavelet combined with bilateral filtering in digital holography[J]. Opto-Electronic Engineering, 2016, 43(8): 39–46.

    [14] Rong L, Xiao W, Pan F, et al. Speckle noise reduction in digital holography by use of multiple polarization holograms[J]. Chinese Optics Letters, 2010, 8(7): 653–655.

    [15] Wang D Y, Wang Y X, Guo S, et al. Research on speckle denoising by lensless Fourier transform holographic imaging with angular diversity[J]. Acta Physica Sinica, 2014, 63(15): 154205.

    [16] Aum J H, Kim J H, Jeong J. Effective speckle noise suppression in optical coherence tomography images using nonlocal means denoising filter with double Gaussian anisotropic kernels[J]. Applied Optics, 2015, 54(13): D43–D50.

    [17] Uzan A, Rivenson Y, Stern A. Speckle denoising in digital holography by nonlocal means filtering[J]. Applied Optics, 2013, 52(1): A195–A200.

    [18] Qin Y, Zhong J G. Theoretical and experimental research of digital holography with partially coherent light based on light-emitting diode[J]. Acta Optica Sinica, 2010, 30(8): 2236–2241.

    [19] Monemhaghdoust Z, Montfort F, Emery Y, et al. Dual wavelength full field imaging in low coherence digital holographic microscopy[J]. Optics Express, 2011, 19(24): 24005–24022.

    [20] Gong Q, Qin Y. LED-based digital holography[J]. Journal of Applied Optics, 2010, 31(2): 237–241.

    [21] Wang H S, Shi T L, Liao G L, et al. Profilometer based on interferometry and micro vision system[J]. Opto-Electronic Engineering, 2008, 35(7): 84–89.

    [22] Kemper B, Sturwald S, Remmersmann C, et al. Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces[J]. Optics and Lasers in Engineering, 2008, 46(7): 499–507.

    [23] Dubois F, Yourassowsky C. Full off-axis red-green-blue digital holographic microscope with LED illumination[J]. Optics Letters, 2012, 37(12): 2190–2192.

    [24] Li Y, Wu K, Lu R S, et al. Automated method of focusing and minimizing OPD in Linnik white light interferometry[J]. Opto-Electronic Engineering, 2012, 39(11): 8–16.

    [25] Guo R L, Yao B L, Gao P, et al. Off-axis digital holographic microscopy with LED illumination based on polarization filtering[J]. Applied Optics, 2013, 52(34): 8233–8238.

    [26] Zhao J L, Di J L, Zhang J W, et al. Common-path digital holographic microscopy and its applications[J]. Proceedings of SPIE, 2016, 10022: 1002202.

    [27] Di J L, Wang K Q, Zhang J W, et al. Quasicommon-path digital holographic microscopy with phase aberration compensation based on a long-working distance objective[J]. Optical Engineering, 2018, 57(2): 024108.

    [28] Guo R L, Wang F. Compact and stable real-time dual-wavelength digital holographic microscopy with a long-working distance objective[J]. Optics Express, 2017, 25(20): 24512–24520.

    [29] Sinclair M B, de Boer M P, Corwin A D. Long-working-distance incoherent-light interference microscope[J]. Applied Optics, 2005, 44(36): 7714–7721.

    [30] Guo R L, Yao B L, Min J W, et al. LED-based digital holographic microscopy with slightly off-axis interferometry[J]. Journal of Optics, 2014, 16(12): 125408.

    Hui Qiannan, Duan Cunli, Feng Bin, Wang Fan, Guo Rongli. Study of low-noise phase-shifting digital holographic microscopy using a long working distance objective[J]. Opto-Electronic Engineering, 2019, 46(12): 190140
    Download Citation