• Laser & Optoelectronics Progress
  • Vol. 57, Issue 22, 221508 (2020)
Qiongying Lü, Yuan Xie*, Guozhen Mu, and Bing Jia
Author Affiliations
  • College of Mechanical and Electric Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/LOP57.221508 Cite this Article Set citation alerts
    Qiongying Lü, Yuan Xie, Guozhen Mu, Bing Jia. Velocity Measurement Method Based on Single-Frame Multiple Local Exposures[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221508 Copy Citation Text show less
    Layout sketch of velocity measurement system
    Fig. 1. Layout sketch of velocity measurement system
    Numbers of target local exposures in single frame when tm≤tf
    Fig. 2. Numbers of target local exposures in single frame when tmtf
    Numbers of target local exposures in the first frame when tm>tf
    Fig. 3. Numbers of target local exposures in the first frame when tm>tf
    Numbers of target local exposures in the last frame when tm>tf
    Fig. 4. Numbers of target local exposures in the last frame when tm>tf
    Numbers of target local exposures in a middle frame when tm>tf
    Fig. 5. Numbers of target local exposures in a middle frame when tm>tf
    Model of monocular vision positioning
    Fig. 6. Model of monocular vision positioning
    Moving target in galvanometer coordinates
    Fig. 7. Moving target in galvanometer coordinates
    Imaging model for local exposure
    Fig. 8. Imaging model for local exposure
    Velocity measurement errors at different target velocities
    Fig. 9. Velocity measurement errors at different target velocities
    Relative velocity measurement error at different target velocities
    Fig. 10. Relative velocity measurement error at different target velocities
    Maximum numbers of local exposures under different target velocities
    Fig. 11. Maximum numbers of local exposures under different target velocities
    Local exposure track of galvanometer scanning
    Fig. 12. Local exposure track of galvanometer scanning
    Moving target obtained by multiple partial exposures in a single frame. (a) Experiment1; (b) experiment2
    Fig. 13. Moving target obtained by multiple partial exposures in a single frame. (a) Experiment1; (b) experiment2
    Results of target velocity measurement
    Fig. 14. Results of target velocity measurement
    Relative velocity measurement error (take initial velocity as true value)
    Fig. 15. Relative velocity measurement error (take initial velocity as true value)
    Relative velocity measurement error (take the average velocity as the true value)
    Fig. 16. Relative velocity measurement error (take the average velocity as the true value)
    ExposureorderPcdi /mPi/mvi/(m·s-1)
    uvxyz
    1810196307.350.5040.157-0.01120.661
    1910046357.340.4840.163-0.01021.928
    209886397.340.4640.169-0.01021.597
    219736457.340.4450.175-0.00916.502
    229616497.330.4250.181-0.00923.672
    584258157.29-0.2840.3980.01017.380
    594128187.30-0.3030.4040.01024.248
    603958247.29-0.3230.4100.01121.229
    613798277.30-0.3430.4160.01117.606
    623668307.30-0.3620.4220.01222.339
    Table 1. Data measured by camera and laser range finder
    Qiongying Lü, Yuan Xie, Guozhen Mu, Bing Jia. Velocity Measurement Method Based on Single-Frame Multiple Local Exposures[J]. Laser & Optoelectronics Progress, 2020, 57(22): 221508
    Download Citation