• Journal of Advanced Dielectrics
  • Vol. 12, Issue 6, 2241001 (2022)
Marina V. Il’ina1、*, Olga I. Soboleva2, Nikolay N. Rudyk2, Maria R. Polyvianova2, Soslan A. Khubezhov2, and Oleg I. Il’in2
Author Affiliations
  • 1Southern Federal University, Institute of Nanotechnologies, Electronics and Equipment Engineering, Shevchenko St., 2, Taganrog, 347922, Russia
  • 2Southern Federal University, Research Laboratory of Functional Nanomaterials Technology, Shevchenko St., 2, Taganrog, 347922, Russia
  • show less
    DOI: 10.1142/S2010135X22410016 Cite this Article
    Marina V. Il’ina, Olga I. Soboleva, Nikolay N. Rudyk, Maria R. Polyvianova, Soslan A. Khubezhov, Oleg I. Il’in. Influence of the aspect ratio of nitrogen-doped carbon nanotubes on their piezoelectric properties[J]. Journal of Advanced Dielectrics, 2022, 12(6): 2241001 Copy Citation Text show less
    References

    [1] B. Liu, C. Wang, J. Liu, Y. Che, C. Zhou. Aligned carbon nanotubes: From controlled synthesis to electronic applications. Nanoscale, 5, 9483(2013). https://doi.org/10.1039/c3nr02595k

    [2] K. Matsumoto. Frontiers of Graphene and Carbon Nanotubes(2015). https://doi.org/10.1007/978-4-431-55372-4

    [3] A. D. Franklin. Carbon nanotube electronics. Emerg. Nanoelectron. Devices, 315-335(2014). https://doi.org/10.1002/9781118958254.ch16

    [4] C. H. Ke, N. Pugno, B. Peng, H. D. Espinosa. Experiments and modeling of carbon nanotube-based NEMS devices. J. Mech. Phys. Solids., 53, 1314(2005). https://doi.org/10.1016/j.jmps.2005.01.007

    [5] L. Wang, C. Yang, J. Wen, S. Gai, Y. Peng. Carbon nanotubes: Synthesis and properties, electronic devices and other emerging applications. J. Mater. Sci. Mater. Electron., 26, 4618(2015). https://doi.org/10.1179/174328004X5655

    [6] S. Abdalla, F. Al-Marzouki, A. A. Al-Ghamdi, A. Abdel-Daiem. Different technical applications of carbon nanotubes. Nanoscale Res. Lett., 10, 358(2015). https://doi.org/10.1186/s11671-015-1056-3

    [7] M. M. Altarawneh, G. A. Alharazneh, O. Y. Al-Madanat. Dielectric properties of single wall carbon nanotubes-based gelatin phantoms. J. Adv. Dielectr., 8, 1(2018). https://doi.org/10.1142/S2010135X18500108

    [8] W. J. Lee, U. N. Maiti, J. M. Lee, J. Lim, T. H. Han, S. O. Kim. Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chem. Commun., 50, 6818(2014). https://doi.org/10.1039/c4cc00146j

    [9] S. N. Faisal, E. Haque, N. Noorbehesht, W. Zhang, A. T. Harris, T. L. Church, A. I. Minett. Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER. RSC Adv., 7, 1(2017). https://doi.org/10.1039/c7ra01355h

    [10] C. Cao, Y. Zhou, S. Ubnoske, J. Zang, Y. Cao, P. Henry, C. B. Parker, J. T. Glass. Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests. Adv. Energy Mater., 9, 1(2019). https://doi.org/10.1002/aenm.201900618

    [11] X. Zhang, Z. Zhao, J. Xu, Q. Ouyang, C. Zhu, X. Zhang, X. Zhang, Y. Chen. N-doped carbon nanotube arrays on reduced graphene oxide as multifunctional materials for energy devices and absorption of electromagnetic wave. Carbon, 177, 216(2021). https://doi.org/10.1016/j.carbon.2021.02.085

    [12] M. Il’ina, O. Il’in, O. Osotova, S. Khubezhov, N. Rudyk, I. Pankov, A. Fedotov, O. Ageev. Pyrrole-like defects as origin of piezoelectric effect in nitrogen-doped carbon nanotubes. Carbon, 190, 348(2022). https://doi.org/10.1016/j.carbon.2022.01.014

    [13] M. Inagaki, M. Toyoda, Y. Soneda, T. Morishita. Nitrogen-doped carbon materials. Carbon, 132, 104(2018). https://doi.org/10.1016/j.carbon.2018.02.024

    [14] L.G. Bulusheva, A. V. Okotrub, Y. V. Fedoseeva, A.G. Kurenya, I. P. Asanov, O. Y. Vilkov, A. A. Koós, N. Grobert. Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition. Phys. Chem. Chem. Phys., 17, 23741(2015). https://doi.org/10.1039/c5cp01981h

    [15] B. G. Sumpter, V. Meunier, J.M. Romo-Herrera, E. Cruz-Silva, D. A. Cullen, H. Terrones, D. J. Smith, M. Terrones. Nitrogen-mediated carbon nanotube growth: Diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation. ACS Nano, 1, 369(2007). https://doi.org/10.1021/nn700143q

    [16] R. Arenal, K. March, C. P. Ewels, X. Rocquefelte, M. Kociak, A. Loiseau, O. Stéphan. Atomic configuration of nitrogen-doped single-walled carbon nanotubes. Nano Lett., 14, 5509(2014). https://doi.org/10.1021/nl501645g

    [17] O. Y. Podyacheva, S. V. Cherepanova, A. I. Romanenko, L. S. Kibis, D. A. Svintsitskiy, A. I. Boronin, O. A. Stonkus, A. N. Suboch, A. V. Puzynin, Z. R. Ismagilov. Nitrogen doped carbon nanotubes and nanofibers: Composition, structure, electrical conductivity and capacity properties. Carbon, 122, 475(2017). https://doi.org/10.1016/j.carbon.2017.06.094

    [18] M. V. Il’ina, O. I. Il’in, A. V. Guryanov, O. I. Osotova, Y. F. Blinov, A. A. Fedotov, O. A. Ageev. Anomalous piezoelectricity and conductivity in aligned carbon nanotubes. J. Mater. Chem. C, 9, 6014(2021). https://doi.org/10.1039/d1tc00356a

    [19] L. Wang, S. Liu, G. Gao, Y. Pang, X. Yin, X. Feng, L. Zhu, Y. Bai, L. Chen, T. Xiao, X. Wang, Y. Qin, Z. L. Wang. Ultrathin piezotronic transistors with 2 nm channel lengths. ACS Nano, 12, 4903(2018). https://doi.org/10.1021/acsnano.8b01957

    [20] Y. Hu, Z. L. Wang. Recent progress in piezoelectric nanogenerators as a sustainable power source in self-powered systems and active sensors. Nano Energy, 14, 3(2014). https://doi.org/10.1016/j.nanoen.2014.11.038

    [21] I. Choi, S. J. Lee, J. C. Kim, Y. Gyu Kim, D. Y. Hyeon, K. S. Hong, J. Suh, D. Shin, H. Y. Jeong, K. Il Park. Piezoelectricity of picosecond laser-synthesized perovskite BaTiO3 nanoparticles. Appl. Surf. Sci., 511, 145614(2020). https://doi.org/10.1016/j.apsusc.2020.145614

    [22] P. Viswanath, K. K. H. De Silva, H. H. Huang, M. Yoshimura. Large piezoresponse in ultrathin organic ferroelectric nano lamellae through self-assembly processing. Appl. Surf. Sci., 532, 147188(2020). https://doi.org/10.1016/j.apsusc.2020.147188

    [23] I. Andryushina, A. Pavlenko, S. Zinchenko, K. Andryushin, L. Shilkina, E. Glazunova, A. Nagaenko, D. Stryukov, H. Sadykov, L. Reznichenko. Obtaining, structure, microstructure and dielectric characteristics of ceramics and thin films of ferro-piezoelectric materials based on the PZT system. J. Adv. Dielectr., 10, 1(2020). https://doi.org/10.1142/S2010135X20600036

    [24] N. Kunnath, J. Philip. Dielectric and piezoelectric perfomance of lead-free ceramics of boron sodium gadolinate niobate at morphotropic phase boundary. J. Adv. Dielectr., 10, 1(2020). https://doi.org/10.1142/S2010135X20500149

    [25] M. V. Il’ina, O. I. Il’in, Y. F. Blinov, V. A. Smirnov, A. S. Kolomiytsev, A. A. Fedotov, B. G. Konoplev, O. A. Ageev. Memristive switching mechanism of vertically aligned carbon nanotubes. Carbon, 123, 514(2017). https://doi.org/10.1016/j.carbon.2017.07.090

    [26] M. V. Ilina, Y. F. Blinov, O. I. Ilin, N. N. Rudyk, O. A. Ageev. Piezoelectric effect in non-uniform strained carbon nanotubes. IOP Conf. Ser. Mater. Sci. Eng., 256, 012024(2017). https://doi.org/10.1088/1757-899X/256/1/012024

    [27] M. V. Il’ina, O. I. Il’in, N. N. Rudyk, O. I. Osotova, A. A. Fedotov, O. A. Ageev. Analysis of the piezoelectric properties of aligned multi-walled carbon nanotubes. Nanomaterials, 11, 2912(2021). https://doi.org/10.3390/nano11112912

    [28] M. Il’ina, O. Il’in, Y. Blinov, A. Konshin, B. Konoplev, O. Ageev. Piezoelectric response of multi-walled carbon nanotubes. Materials, 11, 638(2018). https://doi.org/10.3390/ma11040638

    [29] O. I. Il’in, M. V. Il’ina, N. N. Rudyk, A. A. Fedotov, O. A. Ageev. Vertically aligned carbon nanotubes production by PECVD. Perspect. Carbon Nanotub., 13(2019). https://doi.org/10.5772/intechopen.84732

    [30] O. Il’in, N. Rudyk, A. Fedotov, M. Il’ina, D. Cherednichenko, O. Ageev. Modeling of catalytic centers formation processes during annealing of multilayer nanosized metal films for carbon nanotubes growth. Nanomaterials, 10, 554(2020). https://doi.org/10.3390/nano10030554

    [31] M. V. Il’ina, O. I. Il’in, V. A. Smirnov, Y. F. Blinov, B. G. Konoplev, O. A. Ageev. Scanning probe techniques for characterization of vertically aligned carbon nanotubes. At. Microsc. Its Appl., 13(2019). https://doi.org/10.5772/intechopen.78061

    [32] S. M. Neumayer, S. Saremi, L. W. Martin, L. Collins, A. Tselev, S. Jesse, S. V. Kalinin, N. Balke. Piezoresponse amplitude and phase quantified for electromechanical characterization. J. Appl. Phys., 128, 171105(2020). https://doi.org/10.1063/5.0011631

    [33] Y. Yamada, J. Kim, S. Matsuo, S. Sato. Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon, 70, 59(2014). https://doi.org/10.1016/j.carbon.2013.12.061

    [34] M. Lin, J. P. Y. Tan, C. Boothroyd, K. P. Loh, E. S. Tok, Y. L. Foo. Dynamical observation of bamboo-like carbon nanotube growth. Nano Lett., 7, 2234(2007). https://doi.org/10.1021/nl070681x

    [35] O. A. Louchev. Formation mechanism of pentagonal defects and bamboo-like structures in carbon nanotube growth mediated by surface diffusion. Phys. Status Solidi Appl. Res., 193, 585(2002). https://doi.org/10.1002/1521-396X(200210)193:3<585::AID-PSSA585>3.0.CO;2-Y

    [36] T. Dumitrica, C. M. Landis, B. I. Yakobson. Curvature-induced polarization in carbon nanoshells. Chem. Phys. Lett., 360, 182(2002). https://doi.org/10.1016/S0009-2614(02)00820-5

    [37] S. I. Kundalwal, S. A. Meguid, G. J. Weng. Strain gradient polarization in graphene. Carbon, 117, 462(2017). https://doi.org/10.1016/j.carbon.2017.03.013

    [38] Y. Gao, Z. L. Wang. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett., 7, 2499(2007). https://doi.org/10.1021/nl071310j

    Marina V. Il’ina, Olga I. Soboleva, Nikolay N. Rudyk, Maria R. Polyvianova, Soslan A. Khubezhov, Oleg I. Il’in. Influence of the aspect ratio of nitrogen-doped carbon nanotubes on their piezoelectric properties[J]. Journal of Advanced Dielectrics, 2022, 12(6): 2241001
    Download Citation