• Journal of Advanced Dielectrics
  • Vol. 13, Issue 1, 2242001 (2023)
Limin Hou1, Changxiao Li1, Xinjian Wang1, Xiaozhi Wang2, Ting Wang3, and Yu Huan1、*
Author Affiliations
  • 1School of Materials Science and Engineering, University of Jinan, Jinan 250022, P. R. China
  • 2Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi’an Jiaotong University, Xi’an 710032, P. R. China
  • 3Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, Huizhou University, Huizhou, Guangdong, 516001, P. R. China
  • show less
    DOI: 10.1142/S2010135X22420012 Cite this Article
    Limin Hou, Changxiao Li, Xinjian Wang, Xiaozhi Wang, Ting Wang, Yu Huan. Superior energy storage efficiency through tailoring relaxor behavior and band energy gap in KNN-based ferroelectric ceramic capacitors[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242001 Copy Citation Text show less
    References

    [1] Y. Ming et al. Orientation dependence of polarization-modulated photovoltaic effect of relaxor-based Pb(In1/2Nb1/2)O3 –Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystals. J. Alloy Compd., 902, 163777(2022).

    [2] F.-Z. Yao et al. Multiscale structural engineering of dielectric ceramics for energy storage applications: From bulk to thin films. Nanoscale, 12, 17165(2020).

    [3] B. Fan et al. Dielectric materials for high-temperature capacitors. IET Nanodielectr., 1, 32(2018).

    [4] Y. Huan et al. Intrinsic effects of ruddlesden-popper-based bifunctional catalysts for high-temperature oxygen reduction and evolution. Adv. Energy Mater., 9, 1901573(2019).

    [5] Y. Huan et al. Factors influencing Li+migration in garnet-type ceramic electrolytes. J. Materiomics, 5, 214(2019).

    [6] Z. Li et al. Remarkably enhanced dielectric stability and energy storage properties in BNT-BST relaxor ceramics by A-site defect engineering for pulsed power applications. J. Adv. Ceram., 11, 283(2022).

    [7] P. Lv et al. Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction. Nano Energy, 97, 107182(2022).

    [8] Z. Peiyao et al. Perspectives and challenges for lead-free energy-storage multilayer ceramic capacitors. J. Adv. Ceram., 10, 1153(2021).

    [9] D. Li et al. Progress and perspectives in dielectric energy storage ceramics. J. Adv. Ceram., 10, 675(2021).

    [10] Y. Huan et al. Achieving ultrahigh energy storage efficiency in local-composition gradient-structured ferroelectric ceramics. Chem. Eng. J., 425, 129506(2021).

    [11] H. Ji et al. Ultrahigh energy density in short-range tilted NBT-based lead-free multilayer ceramic capacitors by nanodomain percolation. Energy Storage Mater., 38, 113(2021).

    [12] X. Wang et al. A combined optimization strategy for improvement of comprehensive energy storage performance in sodium niobate-based antiferroelectric ceramics. ACS Appl. Mater. Inter., 14, 9330(2022).

    [13] H. Qi et al. Ultrahigh energy-Sstorage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains. Adv. Funct. Mater., 29, 1903877(2019).

    [14] W. Jia et al. Advances in lead-free high-temperature dielectric materials for ceramic capacitor application. IET Nanodielectr., 1, 3(2018).

    [15] T. Wu et al. Influence of Sr/Ba ratio on the energy storage properties and dielectric relaxation behaviors of strontium barium titanate ceramics. J. Mater. Sci. Mater. Electron., 24, 4105(2013).

    [16] G. Wang et al. Electroceramics for high-energy density capacitors: Current status and future perspectives. Chem. Rev., 121, 6124(2021).

    [17] Z. Lu et al. Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy Environ. Sci., 13, 2938(2020).

    [18] M. Zhang et al. Significant increase in comprehensive energy storage performance of potassium sodium niobate-based ceramics via synergistic optimization strategy. Energy Storage Mater., 45, 861(2022).

    [19] Y. Huan et al. Achieving excellent energy storage reliability and endurance via mechanical performance optimization strategy in engineered ceramics with core-shell grain structure. J. Materiomics, 8, 601(2022).

    [20] H. Pan et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science, 374, 100(2021).

    [21] M. Zhang et al. Energy storage performance of K0.5Na0.5NbO3-based ceramics modified by Bi(Zn2/3 (Nb0.85Ta0.15)1/3)O3. Chem. Eng. J., 425, 131465(2021).

    [22] P. Y. Zhao et al. Ultra-high energy storage performance in lead-free multilayer ceramic capacitors via a multiscale optimization strategy. Energy Environ. Sci., 13, 4882(2021).

    [23] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Sec. A, 32, 751(1976).

    [24] J. O. Gentner et al. Dielectric losses in ferroelectric ceramics produced by domain-wall motion. J. Appl. Phys., 49, 4485(1978).

    [25] M. Hoefling et al. Optimizing the defect chemistry of Na1/2Bi1/2TiO3-based materials: Paving the way for excellent high temperature capacitors. J. Mater. Chem. C, 6, 4769(2018).

    [26] F. Li et al. Local structural heterogeneity and electromechanical responses of ferroelectrics: Learning from relaxor ferroelectrics. Adv. Funct. Mater., 28, 1801504(2018).

    [27] G. Liu et al. Ultrahigh dielectric breakdown strength and excellent energy storage performance in lead-free barium titanate-based relaxor ferroelectric ceramics via a combined strategy of composition modification, viscous polymer processing, and liquid-phase sintering. Chem. Eng. J., 398, 125625(2020).

    [28] Y. Fan et al. Enhanced thermal and cycling reliabilities in (K,Na)-(Nb,Sb)O3-CaZrO3-(Bi,Na)HfO3 ceramics. J. Adv. Ceram., 9, 349(2020).

    [29] X. Wang et al. Optimizing the grain size and grain boundary morphology of (K,Na)NbO3-based ceramics: Paving the way for ultrahigh energy storage capacitors. J. Materiomics, 7, 780(2021).

    [30] H. Borkar et al. Anomalous change in leakage and displacement currents after electrical poling on lead-free ferroelectric ceramics. Appl. Phys. Lett., 107, 122904(2015).

    [31] G. Wang et al. Thermally-induced phase transformations in Na0.5Bi0.5TiO3-KNbO3 ceramics. J. Am. Ceram. Soc., 100, 3293(2017).

    [32] M. Wang et al. Ultrahigh energy storage density and efficiency in Bi0.5Na0.5 TiO3-based ceramics via the domain and bandgap engineering. ACS Appl. Mater. Inter., 14, 19704(2021).

    [33] Z. Wang et al. Reconfigurable quasi-nonvolatile memory/subthermionic FET functions in ferroelectric–2D semiconductor vdW architectures. Adv. Mater., 34, 2200032(2022).

    [34] J. Lin et al. Ultrahigh energy harvesting properties in temperature-insensitive eco-friendly high-performance KNN-based textured ceramics. J. Mater. Chem. A, 10, 7978(2022).

    Limin Hou, Changxiao Li, Xinjian Wang, Xiaozhi Wang, Ting Wang, Yu Huan. Superior energy storage efficiency through tailoring relaxor behavior and band energy gap in KNN-based ferroelectric ceramic capacitors[J]. Journal of Advanced Dielectrics, 2023, 13(1): 2242001
    Download Citation