[1] Brand M J, Schmidt P A, Zaeh M F et al. Welding techniques for battery cells and resulting electrical contact resistances[J]. Journal of Energy Storage, 1, 7-14(2015).
[2] Park Y W, Park H, Rhee S et al. Real time estimation of CO2 laser weld quality for automotive industry[J]. Optics & Laser Technology, 34, 135-142(2002).
[3] Kim C H, Ahn D C. Coaxial monitoring of keyhole during Yb∶YAG laser welding[J]. Optics & Laser Technology, 44, 1874-1880(2012).
[4] Gu H P, Duley W W. A statistical approach to acoustic monitoring of laser welding[J]. Journal of Physics D: Applied Physics, 29, 556-560(1996).
[5] Huang D, Swanson E A, Lin C P et al. Optical coherence tomography[J]. Science, 254, 1178-1181(1991).
[6] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995).
[7] de Boer J F, Cense B, Park B H et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography[J]. Optics Letters, 28, 2067-2069(2003).
[8] Zhang Z Y, Yu C Y, Qiao Y L et al. Intraoperative optical coherence tomography angiography with micro integration[J]. Chinese Journal of Lasers, 49, 1507301(2022).
[9] Hu M Y, Yang D, Yang Z H et al. Polarization-sensitive optical coherence tomography for oral squamous cell carcinoma tissue imaging[J]. Acta Optica Sinica, 42, 1017002(2022).
[10] Markl D, Hannesschläger G, Sacher S et al. Optical coherence tomography as a novel tool for in-line monitoring of a pharmaceutical film-coating process[J]. European Journal of Pharmaceutical Sciences, 55, 58-67(2014).
[11] Jiang P, Wu D, Xie F et al. Experiment of optical coherence tomography in determining the sequence of intersecting lines of printed documents[J]. Laser & Optoelectronics Progress, 59, 1011005(2022).
[12] Webster P J L, Yu J X Z, Leung B Y C et al. In situ 24 kHz coherent imaging of morphology change in laser percussion drilling[J]. Optics Letters, 35, 646-648(2010).
[13] Leung B Y C, Webster P J L, Fraser J M et al. Real-time guidance of thermal and ultrashort pulsed laser ablation in hard tissue using inline coherent imaging[J]. Lasers in Surgery and Medicine, 44, 249-256(2012).
[14] Kanko J A, Sibley A P, Fraser J M. In situ morphology-based defect detection of selective laser melting through inline coherent imaging[J]. Journal of Materials Processing Technology, 231, 488-500(2016).
[15] Bautze T, Kogel-Hollacher M. Keyhole depth is just a distance: the IDM sensor improves laser welding processes[J]. Laser Technik Journal, 11, 39-43(2014).
[16] Miyagi M, Kawahito Y, Kawakami H et al. Dynamics of solid-liquid interface and porosity formation determined through X-ray phase-contrast in laser welding of pure Al[J]. Journal of Materials Processing Technology, 250, 9-15(2017).
[17] Webster P J L, Wright L G, Ji Y et al. Automatic laser welding and milling with in situ inline coherent imaging[J]. Optics Letters, 39, 6217-6220(2014).
[18] Blecher J J, Galbraith C M, Van Vlack C et al. Real time monitoring of laser beam welding keyhole depth by laser interferometry[J]. Science and Technology of Welding and Joining, 19, 560-564(2014).
[19] Kogel-Hollacher M, Schoenleber M, Bautze T et al. Measurement and closed-loop control of the penetration depth in laser materials processing[C](2016).
[20] Wang C M, Yu F L, Duan A Q et al. Relationship between penetration depth and plasma optic signal during partial-penetration laser welding[J]. Transactions of the China Welding Institution, 23, 45-48, 56(2002).
[21] Qin G L, Lin S Y. Weld penetration monitoring in Nd∶YAG laser deep penetration welding based on coaxial visual sensing technology[J]. Chinese Journal of Mechanical Engineering, 42, 229-233(2006).
[22] Liu J L, Chen Y B, Xu Q H. Correlation of acoustic signals and weld depth in laser welding[J]. Transactions of the China Welding Institution, 27, 72-75, 80, 116(2006).
[23] Fetzer F, Boley M, Weber R et al. Comprehensive analysis of the capillary depth in deep penetration laser welding[J]. Proceedings of SPIE, 10097, 1009709(2017).
[24] Mittelstädt C, Mattulat T, Seefeld T et al. Novel approach for weld depth determination using optical coherence tomography measurement in laser deep penetration welding of aluminum and steel[J]. Journal of Laser Applications, 31, 022007(2019).
[25] Zou J L, He Y, Wu S K et al. Experimental and theoretical characterization of deep penetration welding threshold induced by 1-μm laser[J]. Applied Surface Science, 357, 1522-1527(2015).
[26] Duin R P W, Haringa H, Zeelen R. Fast percentile filtering[J]. Pattern Recognition Letters, 4, 269-272(1986).
[27] Breunig M M, Kriegel H P, Ng R T et al. LOF: identifying density-based local outliers[C], 93-104(2000).
[28] Miyagi M, Wang J Y. Keyhole dynamics and morphology visualized by in situ X-ray imaging in laser melting of austenitic stainless steel[J]. Journal of Materials Processing Technology, 282, 116673(2020).
[29] Boley M, Webster P, Heider A et al. Investigating the keyhole behavior by using X-ray and optical depth measurement techniques[C], 426-430(2014).
[30] Boley M, Fetzer F, Weber R et al. Statistical evaluation method to determine the laser welding depth by optical coherence tomography[J]. Optics and Lasers in Engineering, 119, 56-64(2019).