• Microelectronics
  • Vol. 53, Issue 4, 553 (2023)
WU Zhiwei1 and ZHANG Changchun1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.13911/j.cnki.1004-3365.220360 Cite this Article
    WU Zhiwei, ZHANG Changchun. A 402-405 MHz CMOS Low Power RF Transceiver[J]. Microelectronics, 2023, 53(4): 553 Copy Citation Text show less
    References

    [1] CAVALLARI R, MARTELLI F, ROSINI R, et al. A survey on wireless body area networks: technologies and design challenges [J]. IEEE Communications Surveys & Tutorials, 2014, 16(3): 1635-1657.

    [2] SCHUMACHER T, STADELMAYER M, FASETH T, et al. A review of ultra-low-power and low-cost transceiver design [C] // Austrochip Workshop on Microelectronics. Linz, Austria. 2017: 29-34.

    [3] WANG P P, JIANG H, GAO L, et al. A near-zero-power wake-up receiver achieving -69-dBm sensitivity [J]. IEEE Journal of Solid-State Circuits, 2018, 53(6): 1640-1652.

    [4] FU X, EL-SANKARY K, GE Y, et al. A blind background calibration technique for super- regenerative receivers [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(2): 344-348.

    [5] CHIU C Y, ZHANG Z C, LIN T H. Design of a 06-V, 429-MHz FSK transceiver using Q-enhanced and direct power transfer techniques in 90-nm CMOS [J]. IEEE Journal of Solid-State Circuits, 2020, 55(11): 3024-3035.

    [6] SONG E, PARK B, KWON K. 24-GHz low-power low-IF receiver with a quadrature local oscillator buffer for bluetooth low energy applications [J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68(7): 2369-2373.

    [7] KIM S J, LEE D, LEE K Y, et al. A 24-GHz super-regenerative transceiver with selectivity- improving dual Q-enhancement architecture and 102-μW all-digital FLL [J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(9): 3287-3298.

    [8] CHEN J Y, FLYNN M P, HAYES J P. A fully integrated auto-calibrated super-regenerative receiver in 013-μm CMOS [J]. IEEE Journal of Solid-State Circuits, 2007, 42(9): 1976-1985.

    [9] REZAEI V D, ENTESARI K. A fully on-chip 80-pJ/b OOK super-regenerative receiver with sensitivity-data rate tradeoff capability [J]. IEEE Journal of Solid-State Circuits, 2018, 53(5): 1443-1456.

    [10] BLAAKMEER S C, KLUMPERINK E A M, LEENAERTS D M W, et al. Wideband Balun-LNA with simultaneous output balancing, noise- canceling and distortion-canceling [J]. IEEE Journal of Solid-State Circuits, 2008, 43(6): 1341-1350.

    [11] MONCUNILL-GENIZ F X, PALA-SCHONWALDER P, MAS-CASALS O. A generic approach to the theory of superregenerative reception [J]. IEEE Transactions on Circuits and Systems I, 2005, 52(1): 54-70.

    [12] YIN Y D, FU X M, EL-SANKARY K. A PVT- robust super-regenerative receiver with background frequency calibration and concurrent quenching waveform [J]. Electronics, 2019, 8(10): 11191-111919.