• Journal of Innovative Optical Health Sciences
  • Vol. 10, Issue 6, 1742009 (2017)
Matthew A. Reilly1、2、* and Andre Cleaver3
Author Affiliations
  • 1Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
  • 2Department of Ophthalmology and Visual Science, The Ohio State University, Columbus, OH 43210, USA
  • 3Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
  • show less
    DOI: 10.1142/s1793545817420093 Cite this Article
    Matthew A. Reilly, Andre Cleaver. Inverse elastographic method for analyzing the ocular lens compression test[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742009 Copy Citation Text show less
    References

    [1] A. Gullstrand , Helmholtz’s Treatise on Physiological Optics, translated edition, The Optical Society of America, New York (1924).

    [2] J. F. Koretz, G. H. Handelman , “How the human eye focuses,” Sci. Am. 259, 92–99 (1988).

    [3] M. A. Reilly , “A quantitative geometric mechanics lens model: Insights into the mechanisms of accommodation and presbyopia,” Vision Res. 103, 20–31 (2014).

    [4] R. F. Fisher , “The significance of the shape of the lens and capsular energy changes inaccommodation,” J. Physiol. 201, 21–47 (1969).

    [5] R. A. Weale , On potential causes of presbyopia, Vision Res. 39, 1263–1272 (1999).

    [6] H. J. Burd, S. J. Judge, J. A. Cross , “Numerical modelling of the accommodating lens,” Vision Res. 42, 2235–2251 (2002).

    [7] R. F. Fisher , “The elastic constants of the human lens,” J. Physiol. 212, 147–180 (1971).

    [8] H. J. Burd, G. S. Wilde, S. J. Judge , “An improved spinning lens test to determine the stiffness of the human lens,” Exp. Eye. Res. 92, 28–39 (2011).

    [9] M. A. Reilly, P. Martius, S. Kumar, H. J. Burd, O. Stachs , “The mechanical response of the porcinelens to a spinning test,” Z. Med. Phys. 26, 127–135 (2016).

    [10] H. A. Weeber, G. Eckert, F. Soergel, C. H. Meyer, W. Pechhold, R. G. L. van der Heijde , “Dynamic mechanical properties of human lenses,” Exp. Eye. Res. 80, 425–434 (2005).

    [11] H. A. Weeber, E. Gabriele, P. Wolfgang , “Stiffness gradient in the crystalline lens,” Graefes Arch. Clin. Exp. Ophthalmol. 245, 1357–1366 (2007).

    [12] M. A. Reilly, R. Nathan , “Microindentation of the young porcine ocular lens,” J. Biomech. Eng. 131, 44502 (2009).

    [13] K. R. Heys, C. S. Leigh, T. R. J. Willis , “Massive increase in the stiffness of the human lens nucleuswith age: The basis for presbyopia ” Mol. Vis. 10, 956–963 (2004).

    [14] S. T. Bailey, M. D. Twa, J. C. Gump, M. Venkiteshwar, M. A. Bullimore, R. Sooryakumar , “Light-scattering study of the normal human eye lens: Elastic properties and age dependence,” IEEE Trans. Biomed. Eng. 57, 2910–2917 (2010).

    [15] J. Randall, J. M. Vaughan , “The measurement and interpretation of Brillouin scattering in the lens of the eye,” Proc. R. Soc. Lond. B, Biol. Sci. 214, 449–470 (1982).

    [16] S. Reiss, O. Stachs, R. Guthoff, H. Stolz , “Non-invasive, spatially resolved determination of tissue properties of the crystalline lens with regard to rheology, refractive index, densityand protein concentration by using Brillouin spectroscopy,” Klin. Monbl. Augenheilkd. 228, 1079–1085 (2011).

    [17] G. Scarcelli, P. Kim, S. H. Yun , “In vivo measurement of age-related stiffening in the crystalline lens by Brillouin optical microscopy,” Biophys. J. 101, 1539–1545 (2011).

    [18] G. Scarcelli, S. H. Yun , “In vivo Brillouin optical microscopy of the human eye,” Opt. Express 20, 9197–9202 (2012).

    [19] J. M. Vaughan, J. T. Randall , “Brillouin scattering, density and elastic properties of the lens and cornea of the eye,” Nature 284, 489–491 (1980).

    [20] S. Yoon, S. Aglyamov, A. Karpiouk, S. Emelianov , “The mechanical properties of ex vivo bovine and porcine crystalline lenses: Age-related changes and location-dependent variations,” Ultrasound Med. Biol. 39, 1120–1127 (2013).

    [21] T. N. Erpelding, K. W. Hollman, M. O’Donnell , “Mapping age-related elasticity changes in porcinelenses using bubble-based acoustic radiation force,” Exp. Eye Res. 84, 332–341 (2007).

    [22] P. K. Sharma, H. J. Busscher, T. Terwee, S. A. Koopmans, T. G. van Kooten , “A comparative study on theviscoelastic properties of human and animal lenses,” Exp. Eye Res. 93, 681–688 (2011).

    [23] H. Baradia, N. Negin, G. Adrian , “Mouse lens stiffness measurements,” Exp. Eye Res. 91, 300–307 (2010).

    [24] C. Cheng, D. S. Gokhin, R. B. Nowak, V. M. Fowler , “Sequential application of glass coverslips to assess the compressive stiffness of the mouse lens: Strain and morphometric analyses,” J. Vis. Exp. 111, e53986 (2016).

    [25] D. S. Gokhin, R. B. Nowak, N. E. Kim et al., “Tmod1 and CP49 synergize to control the fiber cell geometry, transparency, and mechanical stiffness of the mouse lens,” PLoS One 7, e48734 (2012).

    [26] G. J. Won, D. S. Fudge, V. Choh , “The effects of actomyosin disruptors on the mechanical integrity of the avian crystalline lens,” Mol. Vis. 21, 98–109 (2015).

    [27] D. S. Fudge, J. V. McCuaig, S. Van Stralen et al., “Intermediate filaments regulate tissue size and stiffness in the murine lens,” Invest. Ophthalmol. Vis. Sci. 52, 3860–3867 (2011).

    [28] R. F. Fisher , “Elastic constants of the human lens capsule,” J. Physiol. 201, 1–19 (1971).

    [29] M. R. Heistand, R. M. Pedrigi, S. L. Delange, J. Dziezyc, J. D. Humphrey , “Multiaxial mechanical behavior of the porcine anterior lens capsule,” Biomech. Model. Mechanobiol. 4, 168–177 (2005).

    [30] G. Wollensak, E. Spoerl , “Influence of indocyanine green staining on the biomechanical properties of porcine anterior lens capsule,” Curr. Eye Res. 29, 413–417 (2004).

    [31] S. Krag, T. T. Andreassen , “Biomechanical measurements of the porcine lens capsule,” Exp. Eye Res. 62, 253–260 (1996).

    [32] Y. Shi , “Further analysis of the lens phenotype in Lim2-deficient mice,” Invest. Ophthalmol. Vis. Sci. 52, 7332–7339 (2011).

    [33] M. D. Perng, R. A. Quinlan , “Seeing is believing! The optical properties of the eye lens aredependent upon a functional intermediate filament cytoskeleton,” Exp. Cell Res. 305, 1–9 (2005).

    [34] U. P. Andley, A. Reilly Matthew , “In vivo lens deficiency of the R49C alphaA-crystallin mutant,” Exp. Eye Res. 90, 699–702 (2010).

    [35] H. Hertz , “Ueber die Berührung fester elastischer Korper,” J. Reine Angew. Math. 92, 156–171 (1882).

    [36] K. L. Johnson , “One hundred years of hertz contact,” Proc. Inst. Mech. Eng. 196, 363–378 (1982).

    [37] S. Bassnett, H. Sikic , “The lens growth process,” Prog. Retin. Eye Res. 60, 181–200 (2017).

    [38] G. S. Wilde, H. J. Burd, S. J. Judge , “Shear modulus data for the human lens determined from aspinning lens test,” Exp. Eye Res. 97, 36–48 (2012).

    [39] C. K. Chai, H. J. Burd, G. S. Wilde , “Shear modulus measurements on isolated human lens nuclei,” Exp. Eye Res. 103, 78–81 (2012).

    [40] N. Ravi, K. T. Wan, K. Swindle, P. D. Hamilton, G. Duan , “Development of techniques to comparemechanical properties of reversible hydrogels with spherical, square columnar, and ocular lens geometry,” Polymer 47, 4203–4209 (2006).

    [41] M. A. Reilly, D. Hamilton Paul, R. Nathan , “Dynamic multi-arm radial lens stretcher: A robotic analog of the ciliary body,” Exp. Eye Res. 86, 157–164 (2008).

    [42] M. A. Reilly, D. Hamilton Paul, P. Gavin, R. Nathan , “Comparison of the behavior of natural and refilled porcine lenses in a robotic lens stretcher,” Exp. Eye Res. 88, 483–494 (2009).

    [43] M. A. Reilly, U. P. Andley , “Quantitative biometric phenotype analysis in mouse lenses,” Mol. Vis. 16, 1041–1046 (2010).

    [44] B. P. Danysh, K. J. Czymmek, P. T. Olurin, J. G. Sivak, M. K. Duncan , “Contributions of mouse genetic background and age on anterior lens capsule thickness,” Anat. Rec. (Hoboken) 291, 1619–1627 (2008).

    [45] J. C. Lagarias, J. A. Reeds, M. H. Wright, P. E. Wright , “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optimiz 9, 112–147 (1998).

    [46] S. Reiss, K. Sperlich, M. Hovakimyan et al., “Ex vivo measurement of postmortem tissue changes in the crystalline lens by Brillouin spectroscopy and confocal reflectance microscopy,” IEEE Trans. Biomed. Eng. 59, 2348–2354 (2012).

    [47] T. A. Powell, R. Amini, A. Oltean et al., “Elasticity of the porcine lens capsule as measured by osmotic swelling,” J. Biomech. Eng. 132, 91008 (2010).

    [48] H. J. Burd, R. A. Regueiro , “Finite element implementation of a multiscale model of the human lens capsule,” Biomech. Model. Mechanobiol. 14, 1363–1378 (2015).

    [49] B. Szabo, I. Babuska , Finite Element Analysis, John Wiley & Sons, New York (1991).

    Matthew A. Reilly, Andre Cleaver. Inverse elastographic method for analyzing the ocular lens compression test[J]. Journal of Innovative Optical Health Sciences, 2017, 10(6): 1742009
    Download Citation