• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 3, 346 (2021)
Bao FENG1、2, Ziyan ZHAO3, Wei JIA1、2, Tianqi DOU4, Fen ZHOU4, Zhongqi SUN4, and Haiqiang MA4
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2021.03.011 Cite this Article
    FENG Bao, ZHAO Ziyan, JIA Wei, DOU Tianqi, ZHOU Fen, SUN Zhongqi, MA Haiqiang. Reference-frame-independent quantum key distribution based on wavelength division multiplexing technology[J]. Chinese Journal of Quantum Electronics, 2021, 38(3): 346 Copy Citation Text show less
    References

    [1] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[C]. International Conference on Computers, Systems & Signal Processing, India, 1984: 175-179.

    [2] Makarov V, Anisimov A, Skaar J. Effects of detector efficiency mismatch on security of quantum cryptosystems[J]. Physical Review A, 2006, 74(2): 022313.

    [3] Qi B, Fung C F, Lo H, et al. Time-shift attack in practical quantum cryptosystems[J]. Quantum Information & Computation, 2007, 7(1): 73-82.

    [4] Li H, Wang S, Huang J, et al. Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources[J]. Physical Review A, 2011, 84(6): 062308.

    [5] Lo H K, Ma X, Chen K. Decoy state quantum key distribution[J]. Physical Review Letters, 2005, 94(23): 230504.

    [6] Acin A, Brunner N, Gisin N, et al. Device-independent security of quantum cryptography against collective attacks[J]. Physical Review Letters, 2007, 98(23): 230501.

    [7] Braunstein S L, Pirandola S. Side-channel-free quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130502.

    [8] Lo H, Curty M, Qi B, et al. Measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2012, 108(13): 130503.

    [9] Laing A, Scarani V, Rarity J, et al. Reference frame independent quantum key distribution[J]. Physical Review A, 2010, 82(1): 012304.

    [10] Yin Z Q, Wang S, Chen W, et al. Reference-free-independent quantum key distribution immune to detector side channel attacks[J]. Quantum Information Processing, 2014, 13(5): 1237-1244.

    [11] Liang W Y, Wang S, Li H W, et al. Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding[J]. Scientific Reports, 2014, 4(1): 3617.

    [12] Wang C, Song X T, Yin Z Q, et al. Phase-reference-free experiment of measurement-device-independent quantum key distribution[J]. Physical Review Letters, 2015, 115(16): 160502.

    [13] Zhang C, Zhu J, Wang Q, et al. Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution[J]. Physical Review A, 2017, 95(3): 032309.

    [14] Won-Young H. Reference-frame-independent measurement-device-independent quantum key distribution with uncharacterized qubits[J]. Journal of the Korean Physical Society, 2018, 73(7): 861-865.

    [15] Townsend P D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing[J]. Electronics Letters, 1997, 33(3): 188-190.

    [16] Nweke N I, Toliver P, Runser R J, et al. Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels[J]. Applied Physics Letters, 2005, 87(17): 174103.

    [17] Tanaka A, Fujiwara M, Nam S W, et al. Ultra fast quantum key distribution over a 97 km installed telecom fiber with wavelength division multiplexing clock synchronization[J]. Optics Express, 2008, 16(15): 11354-11360.

    [18] Yoshino K, Ochi T, Fujiwara M, et al. Maintenance-free operation of WDM quantum key distribution system through a field fiber over 30 days[J]. Optics Express, 2013, 21(25): 31395-31401.

    [19] Eraerds P, Walenta N, Legré M, et al. Quantum key distribution and 1 Gbps data encryption over a single fibre[J]. New Journal of Physics, 2010, 12(6): 063027.

    [20] Patel K A, Dynes J F, Lucamarini M, et al. Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks[J]. Applied Physics Letters, 2014, 104(5): 051123.

    [21] Wang L J, Zou K H, Sun W, et al. Long-distance copropagation of quantum key distribution and terabit classical optical data channels[J]. Physical Review A, 2017, 95(1): 012301.

    [22] Mao Y, Wang B X, Zhao C, et al. Integration of quantum key distribution with classical communications in backbone fiber network[J]. Optics Express, 2017, 26(5): 6010-6020.

    [23] Sun W, Wang L J, Sun X X, et al. Experimental integration of quantum key distribution and gigabit-capable passive optical network[J]. Journal of Applied Physics, 2018, 123(4): 043105.

    [24] Eriksson T A, Hirano T, Puttnam B J, et al. Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 Tbit/s data channels[J]. Communications Physics, 2019, 2(1): 1-8.

    [25] Mo X F, Zhu B, Han Z F, et al. Faraday-Michelson system for quantum cryptography[J]. Optics Letters, 2005, 30(19): 2632-2634.

    [26] Lo H, Ma X, Chen K, et al. Decoy state quantum key distribution[J]. Physical Review Letters, 2005, 94(23): 230504.

    [27] Yoshino K, Fujiwara M, Tanaka A, et al. High-speed wavelength-division multiplexing quantum key distribution system[J]. Optics Letters, 2012, 37(2): 223-225.

    [28] Eldada L, Shacklette L W. Advances in polymer integrated optics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(1): 54-68.

    CLP Journals

    [1] XU Kai, CAO Huan, ZHANG Chao, HU Xiaomin, HUANG Yunfeng, LIU Biheng, LI Chuanfeng. Recent advances in transmission of photonic orbital angular momentum quantum state[J]. Chinese Journal of Quantum Electronics, 2022, 39(1): 3

    FENG Bao, ZHAO Ziyan, JIA Wei, DOU Tianqi, ZHOU Fen, SUN Zhongqi, MA Haiqiang. Reference-frame-independent quantum key distribution based on wavelength division multiplexing technology[J]. Chinese Journal of Quantum Electronics, 2021, 38(3): 346
    Download Citation