• Opto-Electronic Engineering
  • Vol. 47, Issue 6, 190447 (2020)
Zhang Qiang*, Zhang Xiaoyu, Xing Yuanyuan, and Zhao Lei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190447 Cite this Article
    Zhang Qiang, Zhang Xiaoyu, Xing Yuanyuan, Zhao Lei. Tunable terahertz structure based on the ferromagnetic film[J]. Opto-Electronic Engineering, 2020, 47(6): 190447 Copy Citation Text show less
    References

    [1] Shen N H, Massaouti M, Gokkavas M, et al. Optically imple-mented broadband blueshift switch in the terahertz regime[J]. Physical Review Letters, 2011, 106(3): 037403.

         Shen N H, Massaouti M, Gokkavas M, et al. Optically imple-mented broadband blueshift switch in the terahertz regime[J]. Physical Review Letters, 2011, 106(3): 037403.

    [2] Zhang X Y, Xing Y Y, Zhang Q, et al. High speed terahertz mod-ulator based on the single channel AlGaN/GaN high electron mobility transistor[J]. Solid-State Electronics, 2018, 146: 9–12.

         Zhang X Y, Xing Y Y, Zhang Q, et al. High speed terahertz mod-ulator based on the single channel AlGaN/GaN high electron mobility transistor[J]. Solid-State Electronics, 2018, 146: 9–12.

    [3] Schurig D, Mock J J, Justice B J, et al. Metamaterial electro-magnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980.

         Schurig D, Mock J J, Justice B J, et al. Metamaterial electro-magnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977–980.

    [4] Pendry J B. Negative refraction makes a perfect lens[J]. Physi-cal Review Letters, 2000, 85(18): 3966–3969.

         Pendry J B. Negative refraction makes a perfect lens[J]. Physi-cal Review Letters, 2000, 85(18): 3966–3969.

    [5] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788–792.

         Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788–792.

    [6] Gu Y P, Xing YY, Zhang X Y, et al. Enhancement of the elec-tromagnetic energy in the asymmetric split rings with compen-sated microstructures[J]. Optical and Quantum Electronics, 2018, 50(4): 168.

         Gu Y P, Xing YY, Zhang X Y, et al. Enhancement of the elec-tromagnetic energy in the asymmetric split rings with compen-sated microstructures[J]. Optical and Quantum Electronics, 2018, 50(4): 168.

    [7] Xing Y Y, Zhang X Y, Zhang Q, et al. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle micro-structure[J]. Optics Communications, 2018, 415: 115–120.

         Xing Y Y, Zhang X Y, Zhang Q, et al. Electromagnetic resonance in the asymmetric terahertz metamaterials with triangle micro-structure[J]. Optics Communications, 2018, 415: 115–120.

    [9] Ma CW, Ma W Y, Tan Y, et al. High Q-factor terahertz metama-terial based on analog of electromagnetically induced transpa-rency and its sensing characteristics[J]. Opto-Electronic Engi-neering, 2018, 45(11): 180298.

         Ma CW, Ma W Y, Tan Y, et al. High Q-factor terahertz metama-terial based on analog of electromagnetically induced transpa-rency and its sensing characteristics[J]. Opto-Electronic Engi-neering, 2018, 45(11): 180298.

    [10] Chen H T, Yang H, Singh R, et al. Tuning the resonance in high-temperature superconducting terahertz metamaterials[J]. Physical Review Letters, 2010, 105(24): 247402.

         Chen H T, Yang H, Singh R, et al. Tuning the resonance in high-temperature superconducting terahertz metamaterials[J]. Physical Review Letters, 2010, 105(24): 247402.

    [11] Liu C, Cao M, Xu G D, et al. Research on the property of elec-tromagnetic wave in nanostructure based on magnetic modula-tion[J]. Journal of Suzhou University of Science and Technology (Natural Science), 2016, 33(2): 19–22.

         Liu C, Cao M, Xu G D, et al. Research on the property of elec-tromagnetic wave in nanostructure based on magnetic modula-tion[J]. Journal of Suzhou University of Science and Technology (Natural Science), 2016, 33(2): 19–22.

    [12] Zhang Y X, Qiao S, Liang S X, et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure[J]. Nano Letters, 2015, 15(5): 3501–3506.

         Zhang Y X, Qiao S, Liang S X, et al. Gbps terahertz external modulator based on a composite metamaterial with a double-channel heterostructure[J]. Nano Letters, 2015, 15(5): 3501–3506.

    [13] Russat J, Suran G, Ouahmane H, et al. Frequency-dependent complex permeability in rare earth-substituted co-balt/nonmagnetic transition metal soft ferromagnetic amorphous thin films[J]. Journal of Applied Physics, 1993, 73(3): 1386–1389.

         Russat J, Suran G, Ouahmane H, et al. Frequency-dependent complex permeability in rare earth-substituted co-balt/nonmagnetic transition metal soft ferromagnetic amorphous thin films[J]. Journal of Applied Physics, 1993, 73(3): 1386–1389.

    [14] Grover F W. Inductance calculations[M]. New York: Dover Pub-lications, 2004.

         Grover F W. Inductance calculations[M]. New York: Dover Pub-lications, 2004.

    Zhang Qiang, Zhang Xiaoyu, Xing Yuanyuan, Zhao Lei. Tunable terahertz structure based on the ferromagnetic film[J]. Opto-Electronic Engineering, 2020, 47(6): 190447
    Download Citation