• Acta Optica Sinica
  • Vol. 42, Issue 23, 2334003 (2022)
Zhen Wang1, Yajun Tong1, Xiaohao Dong2, and Fang Liu1,*
Author Affiliations
  • 1Center for Transformative Science, ShanghaiTech University, Shanghai 201210, China
  • 2Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
  • show less
    DOI: 10.3788/AOS202242.2334003 Cite this Article Set citation alerts
    Zhen Wang, Yajun Tong, Xiaohao Dong, Fang Liu. Optimal Compound Multi-Segment Cooling Method for High-Heat-Load X-Ray Mirrors[J]. Acta Optica Sinica, 2022, 42(23): 2334003 Copy Citation Text show less
    Layout of FEL-I beamline in SHINE
    Fig. 1. Layout of FEL-I beamline in SHINE
    Absorbed power density distribution of M1 at energy of 7.0 keV with grazing angle of 1.9 mrad. (a) Spontaneous radiation; (b) FEL fundamental radiation; (c) third harmonic radiation; (d) total power
    Fig. 2. Absorbed power density distribution of M1 at energy of 7.0 keV with grazing angle of 1.9 mrad. (a) Spontaneous radiation; (b) FEL fundamental radiation; (c) third harmonic radiation; (d) total power
    Heat load distribution at each characteristic energy point in M1. (a) Meridian direction of reflector;(b) sagittal direction of reflector
    Fig. 3. Heat load distribution at each characteristic energy point in M1. (a) Meridian direction of reflector;(b) sagittal direction of reflector
    Mirror cooling model and FEA model. (a) Mirror cooling structure; (b) enlarged view of mirror cooling structure; (c) FEA model of mirror cooling structure; (d) enlarged view of FEA model of mirror cooling structure
    Fig. 4. Mirror cooling model and FEA model. (a) Mirror cooling structure; (b) enlarged view of mirror cooling structure; (c) FEA model of mirror cooling structure; (d) enlarged view of FEA model of mirror cooling structure
    Temperature distribution after ray with energy of 7.0 keV incident on M1 mirror at grazing angle of 1.9 mrad
    Fig. 5. Temperature distribution after ray with energy of 7.0 keV incident on M1 mirror at grazing angle of 1.9 mrad
    Thermal deformation of M1 mirror in meridian direction at each characteristic energy point
    Fig. 6. Thermal deformation of M1 mirror in meridian direction at each characteristic energy point
    Thermal deformation after X-ray with energy of 7.0 keV incident on M1 mirror at grazing angle of 4.0 mrad under different cooling fin lengths
    Fig. 7. Thermal deformation after X-ray with energy of 7.0 keV incident on M1 mirror at grazing angle of 4.0 mrad under different cooling fin lengths
    Residual height error after X-ray with energy of 7.0 keV incident on M1 mirror at grazing angle of 4.0 mrad under different cooling fin lengths
    Fig. 8. Residual height error after X-ray with energy of 7.0 keV incident on M1 mirror at grazing angle of 4.0 mrad under different cooling fin lengths
    Schematic diagram of multi-stage compound cooling structure
    Fig. 9. Schematic diagram of multi-stage compound cooling structure
    DeviceParameterValue
    Electron beamElectron energy /Gev8
    Bunch charge /pC100
    Average current /mA0.1
    Peak current /A1000
    Pulse duration /fs100
    Emittance /(μm·rad)0.4
    Repetition rate /MHz1
    UndulatorPeak magnetic field /T1
    Period /mm26
    Undulator length /m4
    Number of segments42
    Distance between segments /m1
    Table 1. Parameters for accelerator used in simultaneous radiation simulation
    Photon energy /keV3.07.012.415.0
    Bunch charge /pC100100100100
    Electron energy /GeV5888
    Pulse energy /μJ930180039460
    Source size(FWHM)/μm49485050
    Source divergence(FWHM)/μrad5.52.71.71.3
    Table 2. Light source parameters under different photon energies
    MaterialDensity /(kg·m-3Elastic modulus /GPaYield stress /MPaPoisson ratioThermal conductivity /(W·m-1·K-1Thermal expansion coefficient at temperature of 300 K /(10-6 K-1
    Silicon2329112.41200.281482.50
    Copper8900110.02200.343911.75
    In/Ga635028
    Table 3. Material parameters in FEA
    Energy /keV

    Grazing

    angle /mrad

    Total heat /WSimulated SR
    3.04.018.900.17
    5.04.028.600.12
    7.04.038.200.15
    1.937.100.16
    12.41.99.230.29
    15.01.91.720.70
    Table 4. SR of M1 mirror under different energies
    Energy /keVGrazing angle /mradOptimum cooling fin length /mm
    3.04.0156
    5.04.0109
    7.04.053
    1.9148
    12.41.964
    15.01.965
    Table 5. Optimum cooling fin lengths under different energies
    Energy /keVGrazing angle /mradTotal heat /WSimulated SR
    3.04.018.900.30
    5.04.028.600.26
    7.04.038.200.35
    1.937.100.27
    12.41.99.230.60
    15.01.91.720.93
    Table 6. SR under different energies after comprehensive optimization
    Energy /keVGrazing angle /mradBefore OptimizationAfter OptimizationRepetition rate ratio
    Total heat /WRepetition rate /kHzTotal heat /WRepetition rate /kHz
    3.04.00.6333.31.891003.0
    5.04.00.5720.01.57552.8
    7.04.00.4812.53.06806.4
    1.90.6216.71.86503.0
    12.41.90.3740.03.073338.3
    15.01.90.43250.00.865002.0
    Table 7. Nominal heat load and working repetition rate before and after optimization at SR=0.96
    Zhen Wang, Yajun Tong, Xiaohao Dong, Fang Liu. Optimal Compound Multi-Segment Cooling Method for High-Heat-Load X-Ray Mirrors[J]. Acta Optica Sinica, 2022, 42(23): 2334003
    Download Citation