• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170608 (2019)
Ying Tian*, Shiqing Xu**, Feifei Huang, and Junjie Zhang
Author Affiliations
  • Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou, Zhejiang 310018, China
  • show less
    DOI: 10.3788/LOP56.170608 Cite this Article Set citation alerts
    Ying Tian, Shiqing Xu, Feifei Huang, Junjie Zhang. Research Progress of Rare Earth Doped Fluorophosphate Glass Fiber for 2-3 μm Fiber Laser Application[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170608 Copy Citation Text show less
    References

    [1] Sun X, She J B, Li X H et al. Effect of Ba(PO3)2 addition on the optical properties of Tm 3+-doped fluorophosphate glasses [J]. Optical Materials Express, 9, 1233-1245(2019).

    [2] Gao X Y, Tian Y, Liu Q H et al. Efficient 2 μm emission and energy transfer mechanism of Ho 3+ doped fluorophosphate glass sensitized by Er 3+ ions [J]. Infrared Physics & Technology, 91, 200-205(2018).

    [3] Qi F W, Huang F F, Wang T et al. Influence of Tm 3+ ions on the amplification of Ho 3+: 5I7→ 5I8 transition in fluoride glass modified by Al(PO3)3 for applications in mid-infrared optics [J]. Chinese Optics Letters, 15, 051604(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1703210000666B9EaH

    [4] Moskalev I S, Fedorov V V, Mirov S B. Tunable, single-frequency, and multi-watt continuous-wave Cr 2+∶ZnSe lasers [J]. Optics Express, 16, 4145-4153(2008).

    [5] Jackson S D. Towards high-power mid-infrared emission from a fibre laser[J]. Nature Photonics, 6, 423-431(2012).

    [6] Zlatanovic S, Park J S, Moro S et al. Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source[J]. Nature Photonics, 4, 561-564(2010).

    [7] Petersen C R, Møller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 8, 830-834(2014).

    [8] Gauthier J C, Fortin V, Carrée J Y et al. Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber[J]. Optics Letters, 41, 1756-1759(2016).

    [9] Huang K, Gan J W, Zeng J et al. Observation of spectral mode splitting in a pump-enhanced ring cavity for mid-infrared generation[J]. Optics Express, 27, 11766-11775(2019).

    [10] Zu Y Q, Zhang C, Wu Y J et al. Graphene oxide for diode-pumped Tm∶YLF passively Q-switched laser at 2 μm[J]. Chinese Optics Letters, 16, 020013(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180202000115MiOlRo

    [11] Ren Y, Qin Z P, Xie G Q et al. 2 μm mode-locking laser performances of sol-gel-fabricated large-core Tm-doped silica fiber[J]. Chinese Optics Letters, 16, 020020(2018). http://www.opticsjournal.net/Articles/Abstract?aid=OJ180202000152z6C9Fb

    [12] Jackson S D, Sabella A, Hemming A et al. High-power 83 W holmium-doped silica fiber laser operating with high beam quality[J]. Optics Letters, 32, 241-243(2007).

    [13] Hemming A, Bennetts S, Simakov N et al. Development of resonantly cladding-pumped holmium-doped fibre lasers[J]. Proceedings of SPIE, 8237, 82371J(2012).

    [14] Jha A, Richards B, Jose G et al. Rare-earth ion doped TeO2 and GeO2 glasses as laser materials[J]. Progress in Materials Science, 57, 1426-1491(2012).

    [15] Lin C G, Rüssel C, Dai S X. Chalcogenide glass-ceramics: functional design and crystallization mechanism[J]. Progress in Materials Science, 93, 1-44(2018).

    [16] Huang F F, Liu X Q, Hu L L et al. Optical properties and energy transfer processes of Ho 3+/Er 3+- codoped fluorotellurite glass under 1550 nm excitation for 2.0 μm applications [J]. Journal of Applied Physics, 116, 033106(2014).

    [17] Tian Y. Spectroscopic properties of mid-infrared emissions in rare-earth ions doped fluorophosphate glass[D]. Shanghai: University of Chinese Academy of Sciences(2012).

    [18] Kuan P W, Fan X K, Li X et al. High-power 2.04 μm laser in an ultra-compact Ho-doped lead germanate fiber[J]. Optics Letters, 41, 2899-2902(2016).

    [19] Li L X, Wang W C, Zhang C F et al. 2.0 μm Nd 3+/Ho 3+-doped tungsten tellurite fiber laser [J]. Optical Materials Express, 6, 2904-2914(2016).

    [20] Hu J, Menyuk C R, Wei C L et al. Highly efficient cascaded amplification using Pr 3+-doped mid-infrared chalcogenide fiber amplifiers [J]. Optics Letters, 40, 3687-3690(2015).

    [21] Eichhorn M, Jackson S D. Comparative study of continuous wave Tm 3+-doped silica and fluoride fiber lasers [J]. Applied Physics B, 90, 35-41(2008).

    [22] Wu J F, Yao Z D, Zong J et al. Highly efficient high-power thulium-doped germanate glass fiber laser[J]. Optics Letters, 32, 638-640(2007).

    [23] Hanna D C. McCarthy M J, Perry I R, et al. Efficient high-power continuous-wave operation of monomode Tm-doped fibre laser at 2 μm pumped by Nd∶YAG laser at 1.064 μm[J]. Electronics Letters, 25, 1365-1366(1989).

    [24] Richards B D O, Evans C A et al. . Numerical rate equation modelling of a 1.61 μm pumped ~2 μm Tm 3+-doped tellurite fibre laser [J]. Proceedings of SPIE, 6998, 69981T(2008).

    [25] Feng Y T, Meng J Q, Chen W B. Research development of eye-safe all-solid-state lasers[J]. Laser & Optoelectronics Progress, 44, 33-38(2007).

    [26] Peng B, Izumitani T. Optical properties, fluorescence mechanisms and energy transfer in Tm 3+, Ho 3+ and Tm 3+ -Ho 3+ doped near-infrared laser glasses, sensitized by Yb 3+ [J]. Optical Materials, 4, 797-810(1995).

    [27] Oh K, Morse T F, Kilian A et al. Continuous-wave oscillation of thulium-sensitized holmium-doped silica fiber laser[J]. Optics Letters, 19, 278-280(1994).

    [28] Jackson S D, Mossman S. Diode-cladding-pumped Yb 3+, Ho 3+-doped silica fiber laser operating at 2.1 μm [J]. Applied Optics, 42, 3546-3549(2003).

    [29] Pollnan M, Jackson S D. Erbium 3-μm fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 7, 30-40(2001).

    [30] Tsang Y H. El-Taher A E, King T A, et al. Efficient 2.96 micron dysprosium-doped ZBLAN fibre laser pumped at 1.3 micron[J]. Proceedings of SPIE, 6190, 61900J(2006).

    [31] Schweizer T, Hewak D W, Samson B N et al. Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass[J]. Optics Letters, 21, 1594-1596(1996).

    [32] Pollnau M, Jackson S D. Advances in mid-infrared fiber lasers[M]. ∥ Ebrahim-Zadeh M, Sorokina I T. Mid-infrared coherent sources and applications. Dordrecht: Springer, 315-346(2008).

    [33] Smart R G, Carter J N, Tropper A C et al. Continuous-wave oscillation of Tm 3+ -doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm [J]. Optics Communications, 82, 563-570(1991).

    [34] Tokita S, Murakami M, Shimizu S et al. Liquid-cooled 24 W mid-infrared Er∶ZBLAN fiber laser[J]. Optics Letters, 34, 3062-3064(2009).

    [35] Li J F, Hudson D D, Jackson S D. High-power diode-pumped fiber laser operating at 3 μm[J]. Optics Letters, 36, 3642-3644(2011).

    [36] Majewski M R, Woodward R I, Jackson S D. Dysprosium-doped ZBLAN fiber laser tunable from 2.8 μm to 3.4 μm, pumped at 1.7 μm[J]. Optics Letters, 43, 971-974(2018).

    [37] Zhang J J, He D B, Duan Z C et al. Progress of applied study on fluorophosphates glasses[J]. Laser & Optronics Progress, 42, 12-16, 41(2005).

    [38] Weber M J. Oxide and halide laser glasses[J]. NASA STI/Recon Technical Report N, 8324854(1982).

    [39] Bliss E, Hunt J, Renard P et al. Effects of nonlinear propagation on laser focusing properties[J]. IEEE Journal of Quantum Electronics, 12, 402-406(1976).

    [40] Stokowski S E, Martin W E, Yarema S M. Optical and lasing properties of fluorophosphate glass[J]. Journal of Non-Crystalline Solids, 40, 481-487(1980).

    [41] Liao M S. Spectroscopic characteristics of rare earth ions doped fluorophosphate glass[D]. Shanghai: University of Chinese Academy of Sciences(2007).

    [42] Zhang L Y. The study of spectroscopic and laser properties of Yb 3+, Er 3+ doped fluorophosphate glass [D]. Shanghai: University of Chinese Academy of Sciences(2005).

    [43] Jiang Z H[M]. New optical functional glass(2008).

    [44] Bastien S P. Sunak H R D. Analysis of the performance expected in fluorosphosphate erbium-doped fiber amplifiers with the 800 nm pump band[J]. IEEE Photonics Technology Letters, 3, 1088-1091(1991).

    [45] Ishikawa E, Aoki H, Yamashita T et al. Laser emission and amplification at 1.3 μm in neodymium-doped fluorophosphate fibres[J]. Electronics Letters, 28, 1497-1499(1992).

    [46] Petrov V, Griebner U, Ehrt D et al. Femtosecond self mode locking of Yb∶fluoride phosphate glass laser[J]. Optics Letters, 22, 408-410(1997).

    [47] Ehrt D, Toepfer T. Preparation, structure, and properties of Yb 3+ FP laser glass [J]. Proceedings of SPIE, 4102, 95-105(2000).

    [48] Zhang L Y, Leng Y X, Zhang J J et al. Yb 3+-doped fluorophosphate glass with high cross section and lifetime [J]. Journal of Materials Science & Technology, 26, 921-924(2010).

    [49] Mix E, Heumann E, Huber G et al. Efficient CW-laser operation of Yb-doped fluoride phosphate glass at room temperature. [C]∥Advanced Solid State Lasers 1995, January 30, 1995, Memphis, TN, USA. Washington, D. C.: OSA, YL3(1995).

    [50] Hornung M, Bödefeld R, Siebold M et al. Temporal pulse control of a multi-10 TW diode-pumped Yb∶glass laser[J]. Applied Physics B, 101, 93-102(2010).

    [51] Rolli R, Chiasera A, Montagna M et al. Rare-earth-activated fluoride and tellurite glasses: optical and spectroscopic properties[J]. Proceedings of SPIE, 4282, 109-122(2001).

    [52] Zheng R L, Wang J L, Zhang LL et al. Preparation and properties of Nd 3+∶SrAlF5 nanocrystals embedded fluorophosphate transparent glass-ceramic with long fluorescence lifetime [J]. Applied Physics A, 122, 709(2016).

    [53] Galleani G, Santagneli S H, Messaddeq Y et al. Rare-earth doped fluoride phosphate glasses: structural foundations of their luminescence properties[J]. Physical Chemistry Chemical Physics, 19, 21612-21624(2017).

    [54] Zhang L Y, Xue T F, He D B et al. Influence of Stark splitting levels on the lasing performance of Yb 3+ in phosphate and fluorophosphate glasses [J]. Optics Express, 23, 1505-1511(2015).

    [55] Hu C, Margaryan A, Margaryan A, Associated Equipment et al. 2019-04-30]. https:∥www.sciencedirect.com/science/article/pii/S0168900218317777.(2018).

    [56] Yao Y X, Liu L W, Zhang Y et al. Optical properties of Ce 3+ doped fluorophosphates scintillation glasses [J]. Optical Materials, 51, 94-97(2016).

    [57] Yi L X, Wang M, Feng S Y et al. Emissions properties of Ho 3+: 5I7→ 5I8 transition sensitized by Er 3+ and Yb 3+ in fluorophosphate glasses [J]. Optical Materials, 31, 1586-1590(2009).

    [58] Tian Y, Xu R R, Zhang L Y et al. Observation of 2.7 μm emission from diode-pumped Er 3+/Pr 3+-codoped fluorophosphate glass [J]. Optics Letters, 36, 109-111(2011).

    [59] Tian Y, Xu R R, Hu L L et al. Mid-infrared luminescence and energy transfer of Tm 3+/Yb 3+ doped fluorophosphate glass [J]. Materials Chemistry and Physics, 133, 340-345(2012).

    [60] Tian Y, Zhang J J, Jing X F et al. Synthesis and spectroscopic characterization of Ho 3+/Tm 3+/Pr 3+ doped fluorophosphate glass [J]. Journal of Materials Science: Materials in Electronics, 24, 866-870(2013).

    [61] Li R B, Tian C, Tian Y et al. Mid-infrared emission properties and energy transfer evaluation in Tm 3+ doped fluorophosphate glasses [J]. Journal of Luminescence, 162, 58-62(2015).

    [62] Tian Y, Xu R R, Hu L L et al. Synthesis and infrared photoluminescence around 2.9 μm from Dy 3+/Tm 3+ codoped fluorophosphate glass [J]. Materials Letters, 69, 72-75(2012).

    [63] Chen H F, Chen F Z, Wei T et al. Ho 3+ doped fluorophosphate glasses sensitized by Yb 3+ for efficient 2 μm laser applications [J]. Optics Communications, 321, 183-188(2014).

    [64] Wang M. Investigation on 2 μm rare earth ions doped fluorophosphate glass and fiber[D]. Shanghai: University of Chinese Academy of Sciences(2009).

    Ying Tian, Shiqing Xu, Feifei Huang, Junjie Zhang. Research Progress of Rare Earth Doped Fluorophosphate Glass Fiber for 2-3 μm Fiber Laser Application[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170608
    Download Citation