• Chinese Journal of Quantum Electronics
  • Vol. 32, Issue 4, 445 (2015)
Yushuai WANG*, Yunxia LI, Lei SHI, Chen DONG, Wen MENG, and Yiming JI
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461.2015.04.010 Cite this Article
    WANG Yushuai, LI Yunxia, SHI Lei, DONG Chen, MENG Wen, JI Yiming. Scheme of multiplexed classical and quantum transmission system with heralded single-photon source[J]. Chinese Journal of Quantum Electronics, 2015, 32(4): 445 Copy Citation Text show less
    References

    [1] Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing[C]. Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing[M]. 1984: 175-179.

    [4] Aleksic S, Winkler D, Poppe A, et al. Distribution of quantum keys in optically transparent networks: Perspectives, limitations and challenges[C]. Transparent Optical Networks (ICTON), 2013 15th International Conference on IEEE[M]. 2013: 1-6.

    [5] Townsend P D. Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing[J]. Electr. Lett., 1997, 33(3): 188-190.

    [6] Nweke N I, Toliver P, Runser R J, et al. Experimental characterization of the separation between wavelength-multiplexed quantum and classical communication channels[J]. Appl. Phys. Lett., 2005, 87(17): 174103.

    [7] Eraerds P, Walenta N, et al. Quantum key distribution and 1 Gbps data encryption over a single fibre[J]. New Journal of Physics, 2010, 12(6): 063027.

    [8] Chapuran T E, Toliver P, Peters N A, et al. Optical networking for quantum key distribution and quantum communications[J]. New Journal of Physics, 2009, 11(10): 105001.

    [9] Xia T J, Chen D Z, Wellbrock G A, et al. In-band quantum key distribution (QKD) on fiber populated by high-speed classical data channels[C]. Optical Fiber Communication Conference, Optical Society of America, 2006, OTuJ7.

    [10] Wang Q, Chen W, Xavier G, et al. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source[J]. Phys. Rev. Lett., 2008, 100(9): 090501.

    [11] Qi B, Zhu W, Qian L, et al. Feasibility of quantum key distribution through a dense wavelength division multiplexing network[J]. New Journal of Physics, 2010, 12(10): 103042.

    [12] Patel K A, Dynes J F, Choi I, et al. Coexistence of high-bit-rate quantum key distribution and data on optical fiber[J]. Phys. Rev. X, 2012, 2(4): 041010.

    [13] Patel K A, Dynes J F, Lucamarini M, et al. Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks[J]. Appl. Phys. Lett., 2014, 104(5): 051123.

    [15] Xavier G B, Walenta N, De Faria G V, et al. Experimental polarization encoded quantum key distribution over optical fibres with real-time continuous birefringence compensation[J]. New Journal of Physics, 2009, 11(4): 045015.

    [16] Kawahara H, Medhipour A, Inoue K. Effect of spontaneous Raman scattering on quantum channel wavelength-multiplexed with classical channel[J]. Opt. Comm., 2011, 284(2): 691-696.

    [17] Wang Q, Wang X B, Guo G C. Practical decoy-state method in quantum key distribution with a heralded single-photon source[J]. Phys. Rev. A, 2007, 75(1): 012312.

    CLP Journals

    [1] LI Jiahao, SHI Lei, ZHANG Qifa, XUE Yang, LI Tianxiu. Noise analysis and performance optimization of experiments in classical-quantum signals co-channel transmission[J]. Chinese Journal of Quantum Electronics, 2021, 38(3): 365

    WANG Yushuai, LI Yunxia, SHI Lei, DONG Chen, MENG Wen, JI Yiming. Scheme of multiplexed classical and quantum transmission system with heralded single-photon source[J]. Chinese Journal of Quantum Electronics, 2015, 32(4): 445
    Download Citation