• Photonics Research
  • Vol. 9, Issue 5, 814 (2021)
Jin-Lei Wu1, Yan Wang1, Jin-Xuan Han1, Yu-Kun Feng1, Shi-Lei Su2, Yan Xia3, Yongyuan Jiang1, and Jie Song1、*
Author Affiliations
  • 1School of Physics, Harbin Institute of Technology, Harbin 150001, China
  • 2School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
  • 3Department of Physics, Fuzhou University, Fuzhou 350002, China
  • show less
    DOI: 10.1364/PRJ.415795 Cite this Article Set citation alerts
    Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Yu-Kun Feng, Shi-Lei Su, Yan Xia, Yongyuan Jiang, Jie Song. One-step implementation of Rydberg-antiblockade SWAP and controlled-SWAP gates with modified robustness[J]. Photonics Research, 2021, 9(5): 814 Copy Citation Text show less
    References

    [1] M. Saffman, T. G. Walker, K. Mølmer. Quantum information with Rydberg atoms. Rev. Mod. Phys., 82, 2313-2363(2010).

    [2] M. Saffman. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. J. Phys. B, 49, 202001(2016).

    [3] A. Browaeys, T. Lahaye. Many-body physics with individually controlled Rydberg atoms. Nat. Phys., 16, 132-142(2020).

    [4] Z.-Y. Zhang, T.-Y. Zhang, Z.-K. Liu, D.-S. Ding, B.-S. Shi. Research progress of Rydberg many-body interaction. Acta Phys. Sin., 69, 080301(2020).

    [5] H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin. High-fidelity control and entanglement of Rydberg-atom qubits. Phys. Rev. Lett., 121, 123603(2018).

    [6] T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, M. Saffman. Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array. Phys. Rev. Lett., 123, 230501(2019).

    [7] H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, M. D. Lukin. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett., 123, 170503(2019).

    [8] P. Schau, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau, T. Macr, T. Pohl, I. Bloch, C. Gross. Crystallization in Ising quantum magnets. Science, 347, 1455-1458(2015).

    [9] H. Labuhn, D. Barredo, S. Ravets, S. de Léséleuc, T. Macrì, T. Lahaye, A. Browaeys. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature, 534, 667-670(2016).

    [10] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551, 579-584(2017).

    [11] A. Omran, H. Levine, A. Keesling, G. Semeghini, T. T. Wang, S. Ebadi, H. Bernien, A. S. Zibrov, H. Pichler, S. Choi, J. Cui, M. Rossignolo, P. Rembold, S. Montangero, T. Calarco, M. Endres, M. Greiner, V. Vuletić, M. D. Lukin. Generation and manipulation of Schrödinger cat states in Rydberg atom arrays. Science, 365, 570-574(2019).

    [12] I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, M. Endres. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys., 16, 857-861(2020).

    [13] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, M. D. Lukin. Fast quantum gates for neutral atoms. Phys. Rev. Lett., 85, 2208-2211(2000).

    [14] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, P. Zoller. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett., 87, 037901(2001).

    [15] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, M. Saffman. Observation of Rydberg blockade between two atoms. Nat. Phys., 5, 110-114(2009).

    [16] A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, P. Grangier. Observation of collective excitation of two individual atoms in the Rydberg blockade regime. Nat. Phys., 5, 115-118(2009).

    [17] X.-F. Shi. Deutsch, Toffoli, and CNOT gates via Rydberg blockade of neutral atoms. Phys. Rev. Appl., 9, 051001(2018).

    [18] C.-P. Shen, J.-L. Wu, S.-L. Su, E. Liang. Construction of robust Rydberg controlled-phase gates. Opt. Lett., 44, 2036-2039(2019).

    [19] K.-Y. Liao, X.-H. Liu, Z. Li, Y.-X. Du. Geometric Rydberg quantum gate with shortcuts to adiabaticity. Opt. Lett., 44, 4801-4804(2019).

    [20] B.-J. Liu, S.-L. Su, M.-H. Yung. Nonadiabatic noncyclic geometric quantum computation in Rydberg atoms. Phys. Rev. Res., 2, 043130(2020).

    [21] K. Bergmann, H. Theuer, B. W. Shore. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys., 70, 1003-1025(1998).

    [22] N. V. Vitanov, A. A. Rangelov, B. W. Shore, K. Bergmann. Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys., 89, 015006(2017).

    [23] D. Petrosyan, F. Motzoi, M. Saffman, K. Mølmer. High-fidelity Rydberg quantum gate via a two-atom dark state. Phys. Rev. A, 96, 042306(2017).

    [24] I. I. Beterov, G. N. Hamzina, E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Ryabtsev. Adiabatic passage of radio-frequency-assisted Förster resonances in Rydberg atoms for two-qubit gates and the generation of bell states. Phys. Rev. A, 97, 032701(2018).

    [25] M. Khazali, K. Mølmer. Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of Rydberg atoms and superconducting circuits. Phys. Rev. X, 10, 021054(2020).

    [26] M. Saffman, I. I. Beterov, A. Dalal, E. J. Páez, B. C. Sanders. Symmetric Rydberg controlled-Z gates with adiabatic pulses. Phys. Rev. A, 101, 062309(2020).

    [27] A. Mitra, M. J. Martin, G. W. Biedermann, A. M. Marino, P. M. Poggi, I. H. Deutsch. Robust Mølmer-Sørensen gate for neutral atoms using rapid adiabatic Rydberg dressing. Phys. Rev. A, 101, 030301(2020).

    [28] C. Ates, T. Pohl, T. Pattard, J. M. Rost. Antiblockade in Rydberg excitation of an ultracold lattice gas. Phys. Rev. Lett., 98, 023002(2007).

    [29] T. Pohl, P. R. Berman. Breaking the dipole blockade: nearly resonant dipole interactions in few-atom systems. Phys. Rev. Lett., 102, 013004(2009).

    [30] J. Qian, Y. Qian, M. Ke, X.-L. Feng, C. H. Oh, Y. Wang. Breakdown of the dipole blockade with a zero-area phase-jump pulse. Phys. Rev. A, 80, 053413(2009).

    [31] T. Amthor, C. Giese, C. S. Hofmann, M. Weidemüller. Evidence of antiblockade in an ultracold Rydberg gas. Phys. Rev. Lett., 104, 013001(2010).

    [32] W. Li, C. Ates, I. Lesanovsky. Nonadiabatic motional effects and dissipative blockade for Rydberg atoms excited from optical lattices or microtraps. Phys. Rev. Lett., 110, 213005(2013).

    [33] S. Basak, Y. Chougale, R. Nath. Periodically driven array of single Rydberg atoms. Phys. Rev. Lett., 120, 123204(2018).

    [34] S.-L. Su, E. Liang, S. Zhang, J.-J. Wen, L.-L. Sun, Z. Jin, A.-D. Zhu. One-step implementation of the Rydberg-Rydberg-interaction gate. Phys. Rev. A, 93, 012306(2016).

    [35] S. L. Su, H. Z. Shen, E. Liang, S. Zhang. One-step construction of the multiple-qubit Rydberg controlled-phase gate. Phys. Rev. A, 98, 032306(2018).

    [36] J.-L. Wu, S.-L. Su, Y. Wang, J. Song, Y. Xia, Y. Jiang. Effective Rabi dynamics of Rydberg atoms and robust high-fidelity quantum gates with a resonant amplitude-modulation field. Opt. Lett., 45, 1200-1203(2020).

    [37] T. H. Xing, X. Wu, G. F. Xu. Nonadiabatic holonomic three-qubit controlled gates realized by one-shot implementation. Phys. Rev. A, 101, 012306(2020).

    [38] H.-D. Yin, X.-X. Li, G.-C. Wang, X.-Q. Shao. One-step implementation of Toffoli gate for neutral atoms based on unconventional Rydberg pumping. Opt. Express, 28, 35576-35587(2020).

    [39] J.-L. Wu, J. Song, S.-L. Su. Resonant-interaction-induced Rydberg antiblockade and its applications. Phys. Lett. A, 384, 126039(2020).

    [40] S.-L. Su, F.-Q. Guo, J.-L. Wu, Z. Jin, X. Q. Shao, S. Zhang. Rydberg antiblockade regimes: dynamics and applications. Europhys. Lett., 131, 53001(2020).

    [41] M. Saffman, X. L. Zhang, A. T. Gill, L. Isenhower, T. G. Walker. Rydberg state mediated quantum gates and entanglement of pairs of neutral atoms. J. Phys. Conf. Ser., 264, 012023(2011).

    [42] S. de Léséleuc, D. Barredo, V. Lienhard, A. Browaeys, T. Lahaye. Analysis of imperfections in the coherent optical excitation of single atoms to Rydberg states. Phys. Rev. A, 97, 053803(2018).

    [43] E. Fredkin, T. Toffoli. Conservative logic. Int. J. Theor. Phys., 21, 219-253(1983).

    [44] N. Schuch, J. Siewert. Natural two-qubit gate for quantum computation using the XY interaction. Phys. Rev. A, 67, 032301(2003).

    [45] L. Isenhower, M. Saffman, K. Mølmer. Multibit CkNOT quantum gates via Rydberg blockade. Quantum Inf. Process., 10, 755(2011).

    [46] R. J. Spiteri, M. Schmidt, J. Ghosh, E. Zahedinejad, B. C. Sanders. Quantum control for high-fidelity multi-qubit gates. New J. Phys., 20, 113009(2018).

    [47] W. Feng, D.-W. Wang. Quantum Fredkin gate based on synthetic three-body interactions in superconducting circuits. Phys. Rev. A, 101, 062312(2020).

    [48] S. E. Rasmussen, K. Groenland, R. Gerritsma, K. Schoutens, N. T. Zinner. Single-step implementation of high-fidelity n-bit Toffoli gates. Phys. Rev. A, 101, 022308(2020).

    [49] R. Barends, C. M. Quintana, A. G. Petukhov, Y. Chen, D. Kafri, K. Kechedzhi, R. Collins, O. Naaman, S. Boixo, F. Arute, K. Arya, D. Buell, B. Burkett, Z. Chen, B. Chiaro, A. Dunsworth, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, T. Huang, E. Jeffrey, J. Kelly, P. V. Klimov, F. Kostritsa, D. Landhuis, E. Lucero, M. McEwen, A. Megrant, X. Mi, J. Mutus, M. Neeley, C. Neill, E. Ostby, P. Roushan, D. Sank, K. J. Satzinger, A. Vainsencher, T. White, J. Yao, P. Yeh, A. Zalcman, H. Neven, V. N. Smelyanskiy, J. M. Martinis. Diabatic gates for frequency-tunable superconducting qubits. Phys. Rev. Lett., 123, 210501(2019).

    [50] W. Ning, X.-J. Huang, P.-R. Han, H. Li, H. Deng, Z.-B. Yang, Z.-R. Zhong, Y. Xia, K. Xu, D. Zheng, S.-B. Zheng. Deterministic entanglement swapping in a superconducting circuit. Phys. Rev. Lett., 123, 060502(2019).

    [51] N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 83, 33-80(2011).

    [52] I. L. Chuang, Y. Yamamoto. Quantum bit regeneration. Phys. Rev. Lett., 76, 4281-4284(1996).

    [53] H. Buhrman, R. Cleve, J. Watrous, R. de Wolf. Quantum fingerprinting. Phys. Rev. Lett., 87, 167902(2001).

    [54] B. K. Behera, T. Reza, A. Gupta, P. K. Panigrahi. Designing quantum router in IBM quantum computer. Quantum Inf. Process., 18, 328(2019).

    [55] H.-Z. Wu, Z.-B. Yang, S.-B. Zheng. Quantum state swap for two trapped Rydberg atoms. Chin. Phys. B, 21, 040305(2012).

    [56] X.-F. Shi, F. Bariani, T. A. B. Kennedy. Entanglement of neutral-atom chains by spin-exchange Rydberg interaction. Phys. Rev. A, 90, 062327(2014).

    [57] A. W. Glaetzle, M. Dalmonte, R. Nath, C. Gross, I. Bloch, P. Zoller. Designing frustrated quantum magnets with laser-dressed Rydberg atoms. Phys. Rev. Lett., 114, 173002(2015).

    [58] M. Gärttner, K. P. Heeg, T. Gasenzer, J. Evers. Dynamic formation of Rydberg aggregates at off-resonant excitation. Phys. Rev. A, 88, 043410(2013).

    [59] S.-L. Su, Y. Gao, E. Liang, S. Zhang. Fast Rydberg antiblockade regime and its applications in quantum logic gates. Phys. Rev. A, 95, 022319(2017).

    [60] X.-Y. Zhu, E. Liang, S.-L. Su. Rydberg-atom-based controlled arbitrary-phase gate and its applications. J. Opt. Soc. Am. B, 36, 1937-1944(2019).

    [61] D. James, J. Jerke. Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys., 85, 625-632(2007).

    [62] W. Shao, C. Wu, X.-L. Feng. Generalized James’ effective Hamiltonian method. Phys. Rev. A, 95, 032124(2017).

    [63] M. A. Nielsen. A simple formula for the average gate fidelity of a quantum dynamical operation. Phys. Lett. A, 303, 249-252(2002).

    [64] C.-Y. Guo, L.-L. Yan, S. Zhang, S.-L. Su, W. Li. Optimized geometric quantum computation with a mesoscopic ensemble of Rydberg atoms. Phys. Rev. A, 102, 042607(2020).

    [65] F.-Q. Guo, J.-L. Wu, X.-Y. Zhu, Z. Jin, Y. Zeng, S. Zhang, L.-L. Yan, M. Feng, S.-L. Su. Complete and nondestructive distinguishment of many-body Rydberg entanglement via robust geometric quantum operations. Phys. Rev. A, 102, 062410(2020).

    [66] E. Brion, L. H. Pedersen, K. Mølmer. Implementing a neutral atom Rydberg gate without populating the Rydberg state. J. Phys. B, 40, S159-S166(2007).

    [67] J.-L. Wu, Y. Wang, J.-X. Han, S.-L. Su, Y. Xia, Y. Jiang, J. Song. Resilient quantum gates on periodically driven Rydberg atoms. Phys. Rev. A, 103, 012601(2021).

    [68] X.-F. Shi. Fast, accurate, and realizable two-qubit entangling gates by quantum interference in detuned Rabi cycles of Rydberg atoms. Phys. Rev. Appl., 11, 044035(2019).

    [69] X.-F. Shi. Suppressing motional dephasing of ground-Rydberg transition for high-fidelity quantum control with neutral atoms. Phys. Rev. Appl., 13, 024008(2020).

    [70] A. G. Fowler, A. M. Stephens, P. Groszkowski. High-threshold universal quantum computation on the surface code. Phys. Rev. A, 80, 052312(2009).

    Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Yu-Kun Feng, Shi-Lei Su, Yan Xia, Yongyuan Jiang, Jie Song. One-step implementation of Rydberg-antiblockade SWAP and controlled-SWAP gates with modified robustness[J]. Photonics Research, 2021, 9(5): 814
    Download Citation