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The prevalent fashion of executing Rydberg-mediated two- and multi-qubit quantum gates in neutral atomic
systems is to pump Rydberg excitations using multistep piecewise pulses in the Rydberg blockade regime.
Here, we propose to synthesize a Λ-type Rydberg antiblockade (RAB) of two neutral atoms using periodic fields,
which facilitates one-step implementations of SWAP and controlled-SWAP (CSWAP) gates with the same gate
time. Besides, the RAB condition is modified so as to circumvent the sensitivity of RAB-based gates to infidelity
factors, including atomic decay, motional dephasing, and interatomic distance deviation. Our work makes up the
absence of one-step schemes of Rydberg-mediated SWAP and CSWAP gates and may pave a way to enhance the
robustness of RAB-based gates. © 2021 Chinese Laser Press

https://doi.org/10.1364/PRJ.415795

1. INTRODUCTION

The interaction between neutral atoms excited to Rydberg
states is strong and long-range, making Rydberg atoms attrac-
tive in the context of quantum technologies [1–4]. Rydberg
atoms have been considered as an attractive candidate platform
for quantum computing [5–7] and quantum simulating [8–10]
because of remarkable and continuous advances in cooling,
trapping, and manipulating neutral atoms. Entangled states
with scale up to 20 qubits have been generated in arrays of
Rydberg atoms [11]. Furthermore, atomic species in experi-
ments have been generalized from alkali metal atoms to alkaline
earth atoms [12]. Although various schemes have been put for-
ward to implement Rydberg-mediated quantum gates since the
pioneering protocol was reported [13], enormous challenges re-
main in achieving experimentally high-fidelity Rydberg gates as
well as in highly efficient Rydberg-atom-based quantum com-
puting [1–4]. On the one hand, the gate fidelity is always lim-
ited due to intrinsic and technical errors. Intrinsic errors involve
atomic decay and imperfect approximate conditions, including
blockade errors in the Rydberg blockade [1,14–16] gate
schemes [13,17–20], nonadiabatic errors [21,22] in adiabatic
gate schemes [13,23–27], and higher-order perturbation errors
in Rydberg antiblockade (RAB) [28–33] gate schemes [34–40].
Technical errors are caused by imperfections of techniques in,
e.g., cooling, trapping, and manipulating atoms [1,2,41,42].

On the other hand, existing schemes are not sufficient for
one-step implementing certain two-qubit gates and many
multi-qubit gates, especially for some frequently used gates,
such as the SWAP gate, and the controlled-SWAP (CSWAP),
that is, the Fredkin gate [43].

Despite a controlled-not (CNOT) gate combined with a
small number of single-qubit gates constructing arbitrary gate
operations (e.g., a SWAP gate formed with three CNOT gates
[44]), direct executions of quantum gates can significantly im-
prove the processing efficiency of lengthy quantum algorithms
rather than decomposing them into a series of elementary gates
[25,45–48]. The SWAP gate is an important, nontrivial two-
qubit gate with extensive applications in quantum computation
[49], entanglement swapping [50], and quantum repeaters
[51]. The CSWAP gate is one of the most representative
multi-qubit gates, swapping the quantum states of two target
qubits depending on the state of a control qubit, which holds
important functions in quantum error correction [52], quan-
tum fingerprinting [53], and quantum routers [54]. Among
existing Rydberg-mediated gate schemes, SWAP gates are
achieved in three or more steps, using multiple piecewise pulses
and involving two or more Rydberg states in single atoms
[55–57]. The scheme of implementing a CSWAP gate requires
five-step operations with five piecewise pulses [58]. The multi-
step operations of implementing quantum gates not only make
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quantum algorithms rigmarole and unproductive but also ac-
cumulate more decoherence.

In the present work, we propose schemes to implement one-
step SWAP and CSWAP gates of Rydberg atoms that are driven
by periodic amplitude-modulated (AM) fields. The synthetic
interplay between AM fields and interatomic Rydberg–
Rydberg interaction (RRI) induces a Λ-type RAB structure of
two atoms, based on which a SWAP gate on two atoms and a
CSWAP gate on three atoms can be formed. However, similar
to existing RAB-based gate schemes [34–37,59,60], the atten-
dance of a doubly excited Rydberg state jrri during the evolu-
tion will induce common issues in RAB-based gates, i.e., the
sensitivity to atomic decay, motional dephasing, and inter-
atomic distance deviation. Aiming at these common issues,
we modify the RAB condition to constrain the participation
of jrri in the gate procedure, which can not only reduce
the effect of atomic decay from Rydberg states and of motional
dephasing during Rydberg excitation but also loosen the strin-
gent restrictions on the parameter condition of RAB to a certain
degree. The present work fills the gap of directly constructing
Rydberg-atom SWAP and CSWAP gates in one step. In addi-
tion, the work may also pave the way to circumvent the
common issues in RAB-based gates.

This paper is organized as follows. In Section 2, we illustrate
the construction of a Λ-type RAB structure, based on which
one-step SWAP gates are implemented with resonant and
modified RAB, respectively. In Section 3, the robustness of
two kinds of SWAP gates is studied and compared. In
Section 4, we propose to implement a CSWAP gate in one step.
A conclusion is given in Section 5.

2. SWAP GATES BASED ON RYDBERG
ANTIBLOCKADE

A. Resonant Λ-Type Rydberg Antiblockade
As shown in Fig. 1(a), the interaction of the laser-driven two
atoms is described by the Hamiltonian (ℏ � 1)

Ĥ 12 � Ĥ 1 ⊗ Î2 � Î1 ⊗ Ĥ 2 � V jrrihrrj, (1)

where V jrrihrrj with jrri ≡ jri1 ⊗ jri2 denotes the two-atom
RRI, and Î j (j � 1, 2) is the identity operator of the jth
atom. Ĥ j, the individual Hamiltonian of the jth laser-driven
atom, reads

Ĥ j �
X1
k�0

Ωk�t�
2

jkijhrj �H:c: (2)

We impose resonant AM laser fields on the two atoms to in-
duce AM Rabi frequencies Ωk�t� � Ωkm cos�ωkt� (k � 0, 1),
where Ωkm is the maximum and ωk the modulation frequency.
We separate V into V � δ� δ0, where we define δ ≡ ω1 − ω0

whose function is to compensate for the detuning of the tran-
sition j01i�j10i�↔jrri so as to induce the RAB, while δ0 is a
small quantity with δ ≫ δ0 whose function is to neutralize the
Stark shift of jrri cased by the AM fields. When considering the
parameter condition jω0j, jω1j, jω0 − δj, jω1 � δj≫ jΩ0mj∕4,
jΩ1mj∕4, with the second-order perturbation theory [61,62]
the two-atom Hamiltonian can be reduced toward an effective
form (see Appendix A):

Ĥ e �
�
Ωe

2
�j01ihrrj � j10ihrrj� �H:c:

�
� δ 0jrrihrrj, (3)

in which Ωe � Ω0mΩ1m∕8ω1 − Ω0mΩ1m∕8ω0 is the effective
Rabi frequency of the second-order double Rydberg pumping,
and δ 0 � Δrr � δ0 with Δrr � Ω2

0m∕8ω1 −Ω2
1m∕8ω0 �Ω2

1m∕
8�ω1 � δ� − Ω2

0m∕8�ω0 − δ� being the Stark shift of the
Rydberg pair state jrri.

The effective quantum system described by Eq. (3) indicates
a Λ-type RAB structure where the doubly excited Rydberg pair
state jrri mediates the transition between two odd-parity com-
putational states j01i and j10i, while even-parity states j00i
and j11i remain unaffected. A SWAP gate can be implemented
through a resonant Raman-like process j01i↔jrri↔j10i with
the resonance condition δ 0 � 0 and gate time T � ffiffiffi

2
p

π∕jΩej;
further, the SWAP gate is of the form U SWAP � j00ih00j−
j01ih10j − j10ih01j � j11ih11j, which is equivalent to the
standard form up to local phase operations.

For identifying the gate validity, we simulate numerically the
gate performance by solving the master equation

_ρ � i�ρ, Ĥ Full� −
1

2

XN
j�1

X2
k�0

�L̂j†
k L̂

j
kρ − 2L̂

j
kρL̂

j†
k � ρL̂j†

k L̂
j
k�,

(4)

in which ρ is the density operator and _ρ the time derivative of
the density operator. Ĥ Full denotes the full Hamiltonian of the
atomic system [for the SWAP gate Ĥ Full is Eq. (1)]. N � 2
(N � 3) is the number of atoms for the SWAP (CSWAP) gate.
The atomic decay operator is defined by L̂j

k ≡
ffiffiffiffi
γk

p jkijhrj, for
which an additional ground state j2ij is introduced to denote
those Zeeman magnetic sublevels out of the computational
states j0ij and j1ij. In this work, we assume that 87Rb atoms
are adopted, and decay rates from a Rydberg state into eight
Zeeman ground states are identical for convenience, so

(a) (b)

Fig. 1. (a) Schematic for implementing a SWAP gate. Two identical
atoms are driven resonantly by two AM laser fields, excited from two
ground (computational) states j0i and j1i to a Rydberg (mediated)
state jri, respectively, with modulated Rabi frequencies Ω0�t� and
Ω1�t�. Two atoms are coupled to each other by RRI with strength
V � C6∕d 6, C6 being the van der Waals coefficient and d the inter-
atomic distance. The effective Λ-type RAB dynamics is shown in the
shadow of (b). (b) Schematic for implementing a CSWAP gate. Inset
circle: the control atom c is coupled to target atoms 1 and 2 described
in (a), with RRI strengths V 1c and V 2c corresponding to interatomic
distances d 1c and d 2c , respectively. The effective Λ-type system of the
target atoms is coupled to the control atom with RRI strength
�V 1c � V 2c�. In addition, the control atom is excited resonantly by
another AM field from j0ic to jric with Rabi frequency Ωc�t�.
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γ0 � γ1 � 1∕8τ and γ2 � 3∕4τ with τ being the lifetime of
the Rydberg state.

The computational states can be encoded on the hyperfine
ground states j0i � j5S1∕2, F � 1,mF � 0i and j1i �
j5S1∕2, F � 2,mF � 0i. We choose a suitable set of parame-
ters Ω0m∕2π � 5.6 MHz, Ω1m∕2π � 16.4 MHz, ω0m∕2π �
40 MHz, and ω1m∕2π� 110 MHz, which gives jΩej∕2π �
183.6 kHz, T � 3.872 μs, and Δrr∕2π � −487.4 kHz. For
δ 0 � 0, V ∕2π � 70.49 MHz can be attained, which is exper-
imentally feasible, for example, with {jri � j70S1∕2i
(C6∕2π � 858.4 GHz · μm6), d ∼ 4.8 μm} or {jri �
j100S1∕2i (C6∕2π � 56.2 THz · μm6), d ∼ 9.6 μm}. To il-
lustrate performance of the SWAP gate, in Fig. 2 we numeri-
cally calculate the trace-preserving-quantum-operator-based
average fidelity [34,38,63] (see Appendix B for definition).
The average fidelity of the SWAP gate with δ 0 � 0
reaches >0.995.

B. Modified Condition of Rydberg Antiblockade
The SWAP gate noted above is not robust. The Rydberg pair
state jrri attends significantly the gate procedure, which will
cause nonignorable decay errors. More notably, the gate is sen-
sitive to fluctuations in RRI strength (interatomic distance) and
is susceptible to motion-induced dephasing due to finite atomic
temperature, which are common and intractable issues in RAB-
based gates [34–37,40,59,60,64,65] such that to experimen-
tally implement them with a high-fidelity suffers from great
difficulties. In order to circumvent these issues, reducing par-
ticipation of jrri in the gate procedure can be an effective ap-
proach [38,66,67], which not only reduces atomic decay errors
but also relaxes the demanding RAB condition and weakens
effect of motional dephasing. To this end, we consider the
large-detuning condition jδ 0j ≫ jΩej∕2 for the Λ-type RAB
structure described by Eq. (3). Then, a modified format of
RAB can be obtained, holding an effective ground-state ex-
change interaction between two atoms, described by

Ĥ dd � −
Ωdd

2
�j01i � j10i��h01j � h10j�, (5)

with Ωdd � Ω2
e ∕2δ 0. Thus, a SWAP gate U SWAP can be

achieved with gate time T � π∕jΩdd j. With δ 0∕2π �
1.11 MHz corresponding to T � 33.28 μs, the average gate

fidelity can also reach >0.995 [see Fig. 2]. The modified con-
dition jδ 0j ≫ jΩej∕2 of RAB suppresses the excitation of the
doubly excited Rydberg state jrri, which can be found in
Fig. 3, where we compare the situations of the resonant
RAB [Fig. 3(a)] and the modified RAB [Fig. 3(b)] by plotting
Rydberg excitation probabilities with different excitation num-
bers. From Fig. 3, we learn that the single-excitation states are
hardly populated for both cases. More importantly, the double-
excitation Rydberg pair state jrri is significantly constrained for
the modified RAB, and its excitation probability is less than
0.015 throughout the gate procedure.

3. SWAP GATE WITH MODIFIED ROBUSTNESS

For the conventional Rydberg-antiblockade quantum gates, a
key property is the participation of the Rydberg pair state
jrri in the gate procedure mediating the state shifts of ground
states, so the gate operations on atomic ground states suffer
from decay from Rydberg states, laser dephasing caused by
atomic motions due to the Doppler effect. Besides, to guarantee
the attendance of jrri, the RAB condition with a strict relation
among ω0, ω1, and V must be precisely controlled, which
makes the gate operations sensitive to errors in V . However,
for the modified RAB described by the effective
Hamiltonian in Eq. (5), jrri is not needed in the gate pro-
cedure, so the issues above will be efficiently evaded.

In the following, we investigate and compare infidelities of
the SWAP gates obtained by the resonant RAB and the modi-
fied RAB, taking into account atomic decay originated from a
finite lifetime of the Rydberg state, motional dephasing due to
finite atomic temperature, and fluctuations in RRI strength

Fig. 2. Time-dependent average fidelities of the SWAP gate with
{δ 0 � 0, T � 3.87 μs} and {δ 0∕2π � 1.11 MHz, T � 33.28 μs},
respectively. Atomic decay is not considered.

Fig. 3. Rydberg excitation probabilities during the SWAP gate pro-
cedure with different excitation numbers for (a) the resonant RAB
with δ 0 � 0 and (b) the modified RAB with δ 0∕2π � 1.11 MHz, re-
spectively. Two-atom initial product state jΨ0i � �j0i1 � j1i1�∕ffiffiffi
2

p
⊗ j1i2 is specified.
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caused by interatomic distance deviation. For simplicity, a two-
atom initial product state jΨ0i � �j0i1 � j1i1�∕

ffiffiffi
2

p
⊗ j1i2 is

specified, and the gate fidelity is defined by F ≡ tr�ρjΨihΨj�
with jΨi � U SWAPjΨ0i. From Fig. 4(a), we learn that the infi-
delity of the SWAP gate obtained by the modified RAB is re-
duced compared with that obtained by the resonant RAB, even
though the gate time is prolonged by near 10 multiples. The
gate infidelity for the modified RAB can decrease to below 10−3

with τ > 500 μs.
Due to the atomic thermal motion, processes of Rydberg

excitations suffer from motional dephasing inevitably because
of presence of the Doppler effect [2,68,69], which is an impor-
tant resource of technical errors. When considering motional
dephasing, the Rabi frequencies of the Rydberg excitation in
Eq. (2) are changed, as Ωk�t� → Ωk�t�eiΔk t (k � 0, 1)
[42,68,69]. The detunings Δ0,1 of the Rydberg pumping lasers
seen by the atoms are two random variables yielded with a
Gaussian probability distribution of the mean Δ̄ � 0 and
the standard deviation σΔ � keff vrms, where keff is the effective
wave vector magnitude of lasers that atoms undergo, and
vrms �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT a∕M

p
is the atomic root-mean-square velocity

with kB , T a, and M being the Boltzmann constant, atomic
temperature, and atomic mass, respectively. Here, we suppose
for simplicity that there are two counterpropagating laser fields
with wavelengths λ1 ∼ 480 nm and λ2 ∼ 780 nm used for
excitation of the Rydberg state jri � j100S1∕2i through a
two-photon process with the intermediate state jpi � j5P3∕2i
[68], which gives an effective wave vector magnitude
keff ∼ 5 × 106 m−1 [42]. Then, with these settings, we numeri-
cally work out in Fig. 4(b) the infidelities of the SWAP gates
obtained by the resonant RAB and the modified RAB, respec-
tively. The gate infidelity for the modified RAB is dramatically
reduced by even an order of magnitude when T a > 30 μK,

compared with that for the resonant RAB. With an experimen-
tally accessible atomic temperature T a ∼ 10 μK [5,7], the infi-
delity caused by motional dephasing can be below 10−2.

For controlling the RRI strength between the atoms, inter-
atomic distance cannot be strictly fixed owing to imperfections
of cooling and trapping atoms, and it can be characterized with
a quasi-1D Gaussian probability distribution of the mean
(ideal) d �

ffiffiffiffiffiffiffiffiffiffiffiffi
C6∕V6

p
and the standard deviation σd [6].

From Fig. 4(c), we know that, while the gate performance is
still sensitive to the interatomic distance deviation, the modi-
fied RAB can loosen this sensitivity to a certain degree. More
intuitively, we consider a relative deviation δV to change the
RRI strength into V �1� rand�δV ��, where rand�δV � is a func-
tion creating random numbers within �−δV , δV �. Figure 4(d)
shows the effect of different δV on the fidelities of implement-
ing the SWAP gates. It is apparent that increasing the relative
deviation in V reduces the fidelity of the SWAP gates signifi-
cantly for the case of the resonant RAB, while the effect of δV
on the SWAP gate of the modified RAB is much slighter, which
indicates that the gate performance against the deviations in V
is largely improved by the modified RAB.

4. ONE-STEP IMPLEMENTATION OF CSWAP
GATES

Finally, we illustrate one-step implementation of a CSWAP
gate, for which a control atom (termed c) is introduced, whose
state determines whether or not the SWAP gate on atoms 1 and
2 can be executed. The schematic concerning Rydberg pump-
ing and interatomic RRI is detailed in Fig. 1(b). The interac-
tion of the laser-driven three atoms is described by a full
Hamiltonian

Ĥ 12c � Ĥ 12 ⊗ Î c � Î1 ⊗ Î2 ⊗ Ĥ c � Î1 ⊗ V 2c jrri2chrrj
� V 1c jri1hrj ⊗ Î2 ⊗ jrichrj, (6)

where Ĥ 12 is given in Eq. (1), and Ĥ c �
Ωc�t�j0ichrj∕2�H:c: with Ωc�t� � Ωcm cos�ωc t� modulated
in amplitude. On the basis of the SWAP gate, the Hamiltonian
Eq. (6) is reduced to

Ĥ 0
12c � Ĥ e ⊗ Î c � Î1 ⊗ Î2 ⊗ Ĥ c

� �V 1c � V 2c�jrrrihrrrj, (7)

where Ĥ e is given in Eq. (3). The diagram of this Hamiltonian
is visualized in Fig. 1(b). Furthermore, this three-atom dynam-
ics can be simplified toward the form (see Appendix C)

Ĥ eff � Ĥ e ⊗ j1ich1j, (8)

when considering the condition jωc j ≫ jΩcmj∕4 and
jΩcm∕4� δ 0j ≫ jΩej∕

ffiffiffi
2

p
as well as the relation V 1c�

V 2c � ωc − Δrrr with Δrrr � Ω2
e ∕2ωc �Ω2

cm∕32ωc being a
small Stark shift of the triply excited Rydberg state jrrri.
Equation (8) indicates that when and only when the state of
the control atom is j1i, the SWAP gate on atoms 1 and 2
works, which is exactly a CSWAP gate UCSWAP �
Î1 ⊗ Î2 ⊗ j0ich0j � U SWAP ⊗ j1ich1j. Besides, according
to different assignments of δ 0 in Ĥ e , the CSWAP gate can
be implemented based on not only the resonant RAB but also
on the modified RAB with enhanced robustness, similar to the

Fig. 4. Infidelities of the SWAP gates caused by (a) atomic decay
with different lifetimes of the Rydberg state, (b) motional dephasing
with different atomic temperatures, (c) standard deviations of the
interatomic distance, and (d) deviations in the RRI strength. Each
point in (b), (c), and (d) denotes the average of 201 results.
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implementation of the SWAP gate. In Fig. 5, we numerically
calculate the average fidelity of the CSWAP gate achieved by
the resonant RAB (δ 0 � 0) and the modified RAB (δ 0∕2π �
1.11 MHz), and two lines both reach high average fidelities
>0.991, which is over the error-correction threshold in a
surface code scheme [70].

From Eq. (8), we know that the triply excited Rydberg state
jrrri12c is not involved in the CSWAP gate procedure. Besides,
the modified condition jδ 0j ≫ jΩej∕2 of RAB suppresses the
excitation of the doubly excited Rydberg state jrri12. For more
detailed illustration, in Fig. 6 we calculate numerical Rydberg
excitation probabilities with different excitation numbers for

cases of the resonant RAB and the modified RAB. From
Fig. 6, we learn that the triply excited state jrrri12c is sup-
pressed for both cases. Besides, similar to the SWAP gates,
the single-excitation states are also hardly populated for both
cases, and the double-excitation state jrri12 is also constrained
for the modified RAB, whose excitation probability is always
below 0.015.

The CSWAP gate is on the basis of the SWAP gate, so the
gate performance is similar to the SWAP gate, including gate time
and robustness. Because Rydberg excitation of any one of
the three atoms can be avoided for the modified RAB [see
Fig. 6(b)], the infidelity caused by atomic decay from Rydberg
states into ground states will be negligible. The effect on the
CSWAP gate fidelity of motional dephasing that occurs during
Rydberg excitation is also slight because only virtual excitation for
the three atoms attends throughout the gate procedure. In addi-
tion, the infidelity in the case of the modified RAB, caused by
moderate fluctuations of distances among the three atoms, will be
much less than that in the conventional RAB-based quantum
gates. These properties are identified in Fig. 7.

5. CONCLUSION

To conclude, we have proposed effective schemes to implement
one-step Rydberg-mediated SWAP and CSWAP gates on neu-
tral atomic systems under a Rydberg antiblockade regime. The
use of resonant amplitude-modulated fields enables a Λ-type
Rydberg antiblockade structure, which facilitates a Raman-like
process connecting two odd-parity computational states of two
atoms and thus the implementation of the SWAP gate. Besides,
the robustness of gates is enhanced through modifying the con-
dition of the Rydberg antiblockade. The introduction of a peri-
odically driven control atom makes the execution of the SWAP
gate depend on the state of the control atom, so a CSWAP gate

Fig. 5. Time-dependent average fidelities of the CSWAP gate with
{δ 0 � 0, T � 3.87 μs} and {δ 0∕2π � 1.11 MHz, T � 33.28 μs}, re-
spectively. Atomic decay is not considered. Ωcm∕2π � 12 MHz and
ωc∕2π � 142 MHz, and V 1c∕2π � V 2c∕2π � 70.98 MHz.

Fig. 6. Rydberg excitation probabilities during the CSWAP gate
procedure with different excitation numbers for (a) the resonant
RAB with δ 0 � 0 and (b) the modified RAB with δ 0∕2π �
1.11 MHz, respectively. Three-atom initial product state jΨ0i �
�0i1 − j1i1�∕

ffiffiffi
2

p
⊗ �j0i2 − j1i2�∕

ffiffiffi
2

p
⊗ �j0ic − j1ic�∕

ffiffiffi
2

p
is specified.

Fig. 7. Infidelities of the CSWAP gates caused by (a) atomic decay
with different lifetimes of the Rydberg state, (b) motional dephasing
with different atomic temperatures, (c) standard deviations of the dis-
tance between the two target atoms, and (d) deviations in the RRI
strength between the two target atoms. Each point in (b), (c), and
(d) denotes the average of 201 results.
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is achieved with the same gate time and similar gate perfor-
mance to the SWAP gate. Our work fills the gap of directly
implementing one-step Rydberg-mediated SWAP and
CSWAP gates and circumvents common issues in Rydberg
antiblockade based gates.

APPENDIX A: DERIVATION OF EQ. (3)

With the two-atom basis {jjki} (j, k � 0, 1, r), the full
Hamiltonian of two atoms is

Ĥ 0�
1

2
�Ω0m cos�ω0t��j00ihr0j�j01ihr1j�j0rihrrj�j00ih0rj

�j10ih1rj�jr0ihrrj��Ω1m cos�ω1t��j10ihr0j�j11ihr1j
�j1rihrrj�j01ih0rj�j11ih1rj�jr1ihrrj��H:c:�
�V jrrihrrj: (A1)

We transform Eq. (A1) into the frame defined by
Û 0 � exp�itδjrrihrrj� with δ � V − δ0 � ω1 − ω0 ≫ δ0
and obtain Ĥ 1 � Û 0�Ĥ 0 − i ∂

∂t�Û †
0 � Ĥ 0

1 � δ0jrrihrrj with
Ĥ 0

1 �
Ω0m

4
f�eiω0t � e−iω0t��j00ihr0j � j01ihr1j � j00ih0rj

� j10ih1rj� � �ei�ω0−δ�t � e−iω1t ��j0rihrrj � jr0ihrrj�g

�Ω1m

4
f�eiω1t � e−iω1t��j10ihr0j � j11ihr1j � j01ih0rj

� j11ih1rj� � �eiω0t � e−i�ω1�δ�t ��j1rihrrj � jr1ihrrj�g
�H:c: (A2)

When considering jω0j, jω1j, jω0 − δj, jω1 � δj ≫ jΩ0mj∕4,
jΩ1mj∕4, the terms

Ω0m

4
�eiω0t � e−iω0t��j00ihr0j � j00ih0rj�

�Ω1m

4
�eiω1t � e−iω1t��j11ihr1j � j11ih1rj� �H:c:

can be neglected under the rotating-wave approximation
because the transitions are of large detunings; besides, the in-
volved even-parity states, j00i and j11i, cannot be effectively
coupled resonantly to other states yet through two-photon
processes. In addition, under the second-order perturbation
theory, the even-parity computational states j00i and j11i have
a zero-value sum of Stark shifts, and all single-excitation states
are uncoupled to the four computational states. Then, the re-
maining part of Eq. (A2) can be sorted as

Ĥ 0
1 ≃

�
Ω0m

4
�eiω0t � e−iω0t�j01ihr1j �Ω1m

4
eiω0t jr1ihrrj

�

�
�
Ω1m

4
�eiω1t � e−iω1t�j01ih0rj �Ω0m

4
e−iω1t j0rihrrj

�

�
�
Ω0m

4
�eiω0t � e−iω0t�j10ih1rj �Ω1m

4
eiω0t j1rihrrj

�

�
�
Ω1m

4
�eiω1t � e−iω1t�j10ihr0j �Ω0m

4
e−iω0t jr0ihrrj

�

�Ω0m

4
ei�ω0−δ�t�j0rihrrj � jr0ihrrj�

�Ω1m

4
e−i�ω1�δ�t�j1rihrrj � jr1ihrrj� �H:c: (A3)

With the second-order perturbation theory, the first four terms
in Eq. (A3) induce the effective coupling of j01i↔jrri↔j10i
and Stark shifts of jrri, while the last two terms induce solely
Stark shifts of jrri. Therefore, a final effective Hamiltonian of
the two atoms can be obtained as

Ĥ e �
�
Ωe

2
�j01ihrrj� j10ihrrj��H:c.

�
�δ 0jrrihrrj, (A4)

in whichΩe �Ω0mΩ1m∕8ω1 −Ω0mΩ1m∕8ω0 and δ 0 �Δrr�δ0
with Δrr � Ω2

0m∕8ω1 − Ω2
1m∕8ω0 �Ω2

1m∕8�ω1 � δ� −Ω2
0m∕

8�ω0 − δ� being the sum Stark shift of jrri.

APPENDIX B: DEFINITION OF THE TRACE-
PRESERVING-QUANTUM-OPERATOR-BASED
AVERAGE FIDELITY

According toNielsen'swork [63], the trace-preserving-quantum-
operator-based average fidelity of a quantum gate is defined as

F̄ �ε, Û � �
�X4N

j�1

tr�Û û†j Û
†ε�ûj�� � l 2

��
l 2�l � 1�, (B1)

where Û is the ideal gate, ûj �⊗N
k σ̂k is the tensor of Pauli ma-

trices σ̂k ∈ fÎ , σ̂x , σ̂y, σ̂zg on computational states {j0i, j1i}, and
l � 2N for anN -qubit gate. ε�ûj� is a trace-preserving quantum
operation obtained through our logic gates that can be solved by
the master equation.

APPENDIX C: DERIVATION OF EQ. (8)

First, it is clear that the evolution from three-atom computa-
tional states j001i12c and j111i12c is prohibited. For j000i12c
or j110i12c, the governing Hamiltonian is Ĥ β0 �
Ωcm�eiωc t � e−iωc t�jβ0i12chβrj∕4�H:c: (β � 00, 11). No
evolution will occur when jωc j ≫ jΩcmj∕4 is considered, be-
cause the laser-induced transitions are largely detuned, and
the sum Stark shift of jβ0i12c is zero.

When the state of three atoms is j010i12c or j100i12c, the
governing Hamiltonian of the three atoms is Ĥ 2 �
Ĥ 0

2 � δ 0jrri12hrrj � �V 1c � V 2c�jrrri12chrrrj with
Ĥ 0

2 �
Ωcm

4
�eiωc t � e−iωc t��j010i12ch01rj � j100i12ch10rj

� jrr0i12chrrrj� �
Ωe

2
�j010i12chrr0j � j100i12chrr0j

� j01ri12chrrrj � j10ri12chrrrj� �H:c: (C1)

Transforming Ĥ 2 to the frame defined by Û 1 �
exp �itωc jrrri12chrrrj�, one can obtain Ĥ 3 � Ĥ 0

3�
δ 0jrri12hrrj � �V 1c � V 2c − ωc�jrrri12chrrrj with

Ĥ 0
3�

Ωcm

4
��eiωc t� e−iωc t��j010i12ch01rj�j100i12ch10rj�

��1� e−2iωc t�jrr0i12chrrrj��
Ωe

2
�j010i12chrr0j

�j100i12chrr0j�j01ri12chrrrje−iωc t�j10ri12chrrrje−iωc t�
�H:c: (C2)

Through neglecting frequent oscillations under rotating-wave
approximation with the condition jωc j ≫ jΩcmj∕4, jΩej∕2,
Ĥ 0

3 becomes
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Ĥ 0 0
3 �

�
Ωcm

4
jrr0i12chrrrj

�Ωe

2
�j010i12chrr0j � j100i12chrr0j� �H:c:

�

� Δrrr jrrri12chrrrj, (C3)

with Δrrr � Ω2
e ∕2ωc �Ω2

cm∕32ωc being the Stark shift of
jrrri12c . In this case, an effective three-atom Hamiltonian of
Ĥ 3 can be obtained as Ĥ 4 � Ĥ 0 0

3 � δ 0jrri12hrrj with the con-
dition V 1c � V 2c � ωc − Δrrr . Ĥ 4 can be rewritten as

Ĥ 4 �
�
Ωeffiffiffi
2

p �j010i12c � j100i12c��hϕ0j � hϕ1j� �H:c:
�

�Ωcm

4

X1
n�0

�−1�njϕnihϕnj � δ 0jrri12hrrj, (C4)

in which jϕni � �jrr0i12c � �−1�njrrri12c�∕
ffiffiffi
2

p
.

Transforming Ĥ 4 to the frame defined by Û 2 � exp�itÂ�
with Â � Ωcm

P
1
n�0 �−1�njϕnihϕnj∕4� δ 0jrri12hrrj, one can

obtain a Hamiltonian with entirely off-resonant interactions

Ĥ 5 �
Ωeffiffiffi
2

p �j010i12c � j100i12c��hϕ0je−it�Ωcm∕4�δ 0�

� hϕ1jeit�Ωcm∕4−δ 0�� �H:c: (C5)

When the condition jΩcm∕4� δ 0j ≫ jΩej∕
ffiffiffi
2

p
is satisfied,

transitions from j010i12c or j100i12c can be banned.
Now that the evolution from six three-atom computational

states, including j000i12c , j010i12c , j100i12c , j110i12c ,
j001i12c , and j111i12c , is banned, the dynamics of the three
atoms can be governed by an effective Hamiltonian

Ĥ eff �
�
Ωe

2
�j011i12c � j101i12c�hrr1j �H:c:

�

� δ 0jrr1i12chrr1j, (C6)

which is exactly Eq. (8) in the main text.
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