• Advanced Photonics
  • Vol. 1, Issue 1, 016001 (2019)
Andrey A. Bogdanov1、2, Kirill L. Koshelev1、3, Polina V. Kapitanova1, Mikhail V. Rybin1、2, Sergey A. Gladyshev1, Zarina F. Sadrieva1, Kirill B. Samusev1、2, Yuri S. Kivshar1、3、*, and Mikhail F. Limonov1、2
Author Affiliations
  • 1ITMO University, Department of Nanophotonics and Metamaterials, St. Petersburg, Russia
  • 2Ioffe Institute, St. Petersburg, Russia
  • 3Australian National University, Nonlinear Physics Center, Canberra, Australia
  • show less
    DOI: 10.1117/1.AP.1.1.016001 Cite this Article Set citation alerts
    Andrey A. Bogdanov, Kirill L. Koshelev, Polina V. Kapitanova, Mikhail V. Rybin, Sergey A. Gladyshev, Zarina F. Sadrieva, Kirill B. Samusev, Yuri S. Kivshar, Mikhail F. Limonov. Bound states in the continuum and Fano resonances in the strong mode coupling regime[J]. Advanced Photonics, 2019, 1(1): 016001 Copy Citation Text show less
    References

    [1] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [2] B. Min et al. High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature, 457, 455-458(2009).

    [3] S.-H. Kwon et al. Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity. Nano Lett., 10, 3679-3683(2010).

    [4] Y. Akahane et al. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 425, 944-947(2003).

    [5] A. Matsko, V. Ilchenko. Optical resonators with whispering-gallery modes-part I: basics. IEEE J. Sel. Top. Quantum Electron., 12, 3-14(2006).

    [6] H. M. Lai et al. Effect of perturbations on the widths of narrow morphology-dependent resonances in Mie scattering. J. Opt. Soc. Am. B, 8, 1962-1973(1991).

    [7] S. G. Johnson et al. Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap. Appl. Phys. Lett., 78, 3388-3390(2001).

    [8] M. V. Rybin et al. High-q supercavity modes in subwavelength dielectric resonators. Phys. Rev. Lett., 119, 243901(2017).

    [9] J. Von Neuman, E. Wigner. Uber merkwurdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z., 30, 467-470(1929).

    [10] H. Friedrich, D. Wintgen. Interfering resonances and bound states in the continuum. Phys. Rev. A, 32, 3231-3242(1985).

    [11] R. Parker. Resonance effects in wake shedding from parallel plates: some experimental observations. J. Sound Vib., 4, 62-72(1966).

    [12] R. Parker. Resonance effects in wake shedding from parallel plates: calculation of resonant frequencies. J. Sound Vib., 5, 330-343(1967).

    [13] A. A. Lyapina et al. Bound states in the continuum in open acoustic resonators. J. Fluid Mech., 780, 370-387(2015).

    [14] D. C. Marinica, A. G. Borisov, S. V. Shabanov. Bound states in the continuum in photonics. Phys. Rev. Lett., 100, 183902(2008).

    [15] E. N. Bulgakov, A. F. Sadreev. Bound states in the continuum in photonic waveguides inspired by defects. Phys. Rev. B, 78, 075105(2008).

    [16] R. F. Ndangali, S. V. Shabanov. Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders. J. Math. Phys., 51, 102901(2010).

    [17] C. W. Hsu et al. Observation of trapped light within the radiation continuum. Nature, 499, 188-191(2013).

    [18] F. Monticone, A. Alù. Embedded photonic eigenvalues in 3D nanostructures. Phys. Rev. Lett., 112, 213903(2014).

    [19] M. Rybin, Y. Kivshar. Supercavity lasing. Nature, 541, 164-165(2017).

    [20] Y. Plotnik et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett., 107, 183901(2011).

    [21] M. I. Molina, A. E. Miroshnichenko, Y. S. Kivshar. Surface bound states in the continuum. Phys. Rev. Lett., 108, 070401(2012).

    [22] G. Corrielli et al. Observation of surface states with algebraic localization. Phys. Rev. Lett., 111, 220403(2013).

    [23] J. Wiersig. Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities. Phys. Rev. Lett., 97, 253901(2006).

    [24] J. Unterhinninghofen, J. Wiersig, M. Hentschel. Goos-Hänchen shift and localization of optical modes in deformed microcavities. Phys. Rev. E, 78, 016201(2008).

    [25] T. Lepetit, B. Kanté. Controlling multipolar radiation with symmetries for electromagnetic bound states in the continuum. Phys. Rev. B, 90, 241103(2014).

    [26] T. Lepetit et al. Resonance continuum coupling in high-permittivity dielectric metamaterials. Phys. Rev. B, 82, 195307(2010).

    [27] S. I. Azzam et al. Formation of bound states in the continuum in hybrid plasmonic-photonic systems. Phys. Rev. Lett., 121, 253901(2018).

    [28] L. Fonda. Bound states embedded in the continuum and the formal theory of scattering. Ann. Phys., 22, 123-132(1963).

    [29] C. S. Kim et al. Resonant tunneling in a quantum waveguide: effect of a finite-size attractive impurity. Phys. Rev. B, 60, 10962(1999).

    [30] Z. F. Sadrieva et al. Transition from optical bound states in the continuum to leaky resonances: role of substrate and roughness. ACS Photon., 4, 723-727(2017).

    [31] C. Blanchard, J.-P. Hugonin, C. Sauvan. Fano resonances in photonic crystal slabs near optical bound states in the continuum. Phys. Rev. B, 94, 155303(2016).

    [32] E. N. Bulgakov, A. F. Sadreev. Propagating Bloch bound states with orbital angular momentum above the light line in the array of dielectric spheres. J. Opt. Soc. Am. A, 34, 949-952(2017).

    [33] I. Liberal, N. Engheta. Near-zero refractive index photonics. Nat. Photonics, 11, 149-158(2017).

    [34] M. I. Mishchenko. Light scattering by size–shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength. Appl. Opt., 32, 4652-4666(1993).

    [35] M. I. Mishchenko, L. D. Travis. T-matrix computations of light scattering by large spheroidal particles. Opt. Commun., 109, 16-21(1994).

    [36] K. Zhang, D. Li. Electromagnetic Theory for Microwaves and Optoelectronics(2008).

    [37] D. J. Jackson. Classical Electrodynamics(1998).

    [38] A. N. Oraevsky. Whispering-gallery waves. Quantum Electron., 32, 377-400(2002).

    [39] V. S. Ilchenko, A. B. Matsko. Optical resonators with whispering-gallery modes-part II: applications. IEEE J. Sel. Top. Quantum Electron., 12, 15-32(2006).

    [40] L. D. Landau, E. M. Lifshitz. Quantum Mechanics: Non-Relativistic Theory(1989).

    [41] M. Scully, M. Zubairy. Quantum Optics(1997).

    [42] H. M. Lai et al. Time-independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets. Phys. Rev. A, 41, 5187(1990).

    [43] E. S. C. Ching et al. Quasinormal-mode expansion for waves in open systems. Rev. Mod. Phys., 70, 1545-1554(1998).

    [44] E. A. Muljarov, W. Langbein, R. Zimmermann. Brillouin–Wigner perturbation theory in open electromagnetic systems. EPL Europhys. Lett., 92, 50010(2011).

    [45] Y. B. Zeldovich. On the theory of unstable states. J. Exp. Theor. Phys., 12, 542-545(1961).

    [46] L. Brillouin. Les problèmes de perturbations et les champs self-consistents. J. Phys. Radium, 3, 373-389(1932).

    [47] R. M. More. Theory of decaying states. Phys. Rev. A, 4, 1782-1790(1971).

    [48] M. V. Rybin et al. Mie scattering as a cascade of Fano resonances. Opt. Express, 21, 30107-30113(2013).

    [49] M. V. Rybin et al. Switching from visibility to invisibility via Fano resonances: theory and experiment. Sci. Rep., 5, 8774(2015).

    [50] M. I. Tribelsky, A. E. Miroshnichenko. Giant in-particle field concentration and Fano resonances at light scattering by high-refractive-index particles. Phys. Rev. A, 93, 053837(2016).

    [51] X. Kong, G. Xiao. Fano resonances in core-shell particles with high permittivity covers, 1715-1719(2016).

    [52] U. Fano. Effects of configuration interaction on intensities and phase shifts. Phys. Rev., 124, 1866-1878(1961).

    [53] M. F. Limonov et al. Fano resonances in photonics. Nat. Photonics, 11, 543-554(2017).

    [54] B. Gallinet, O. J. F. Martin. Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials. Phys. Rev. B, 83, 235427(2011).

    [55] A. B. Evlyukhin et al. Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles. Phys. Rev. B, 94, 205434(2016).

    [56] M. Doost, W. Langbein, E. A. Muljarov. Resonant-state expansion applied to three-dimensional open optical systems. Phys. Rev. A, 90, 013834(2014).

    [57] J. S. T. Gongora, G. Favraud, A. Fratalocchi. Fundamental and high-order anapoles in all-dielectric metamaterials via Fano–Feshbach modes competition. Nanotechnology, 28, 104001(2017).

    [58] W. Suh, Z. Wang, S. Fan. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron., 40, 1511-1518(2004).

    [59] S. Muhlig et al. Multipole analysis of eta-atoms. Metamaterials, 5, 64-73(2011).

    [60] L. Zhang et al. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun., 9, 713(2018).

    [61] U. Kaatze. Complex permittivity of water as a function of frequency and temperature. J. Chem. Eng. Data, 34, 371-374(1989).

    [62] B. Zhen et al. Topological nature of optical bound states in the continuum. Phys. Rev. Lett., 113, 257401(2014).

    [63] A. I. Kuznetsov et al. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [64] D. G. Baranov et al. All-dielectric nanophotonics: the quest for better materials and fabrication techniques. Optica, 4, 814-825(2017).

    [65] G. M. Larsson. Wideband measurements of the forward RCS and the extinction cross section. ACES J., 28, 1145-1152(2013).

    [66] C. F. Bohren, D. R. Huffman. Absorption and Scattering of Light by Small Particles(2008).

    [67] C. Larsson et al. Extinction cross section measurements, 127-129(2008).

    CLP Journals

    [1] Lujun Huang, Lei Xu, Mohsen Rahmani, Dragomir Neshev, Andrey E. Miroshnichenko. Pushing the limit of high-Q mode of a single dielectric nanocavity[J]. Advanced Photonics, 2021, 3(1): 016004

    [2] Linpeng Gu, Liang Fang, Qingchen Yuan, Xuetao Gan, Hao Yang, Xutao Zhang, Juntao Li, Hanlin Fang, Vladislav Khayrudinov, Harri Lipsanen, Zhipei Sun, Jianlin Zhao. Nanowire-assisted microcavity in a photonic crystal waveguide and the enabled high-efficiency optical frequency conversions[J]. Photonics Research, 2020, 8(11): 1734

    [3] Biqiang Jiang, Xiaoming Zhang, Ailun Li, Yueguo Hou, Zhen Hao, Xuetao Gan, Jianlin Zhao. Electrically induced dynamic Fano-like resonance in a graphene-coated fiber grating[J]. Photonics Research, 2022, 10(5): 1238

    [4] Shaimaa I. Azzam, Alexander V. Kildishev. Waves stranded at sea: bound states in the continuum in a strong coupling regime[J]. Advanced Photonics, 2019, 1(1): 010503

    Andrey A. Bogdanov, Kirill L. Koshelev, Polina V. Kapitanova, Mikhail V. Rybin, Sergey A. Gladyshev, Zarina F. Sadrieva, Kirill B. Samusev, Yuri S. Kivshar, Mikhail F. Limonov. Bound states in the continuum and Fano resonances in the strong mode coupling regime[J]. Advanced Photonics, 2019, 1(1): 016001
    Download Citation