• Acta Optica Sinica
  • Vol. 43, Issue 5, 0514003 (2023)
Ziyan Li1, Wenxi Pei1、2, Hao Li1、2, Wei Huang1、2, Xuanxi Li1、2, Zefeng Wang1、2、3、*, and Jinbao Chen1、2、3
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology,Changsha 410073, Hunan, China
  • 2Nanhu Laser Laboratory, National University of Defense Technology,Changsha 410073, Hunan, China
  • 3State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, Hunan, China
  • show less
    DOI: 10.3788/AOS221692 Cite this Article Set citation alerts
    Ziyan Li, Wenxi Pei, Hao Li, Wei Huang, Xuanxi Li, Zefeng Wang, Jinbao Chen. 2.15 μm All-Fiber Gas Raman Laser Source[J]. Acta Optica Sinica, 2023, 43(5): 0514003 Copy Citation Text show less
    References

    [1] Lin P, Wang T S, Ma W Z et al. Transmission characteristics of 1.55 and 2.04 µm laser carriers in a simulated smoke channel based on an actively mode-locked fiber laser[J]. Optics Express, 28, 39216-39226(2020).

    [2] Lahyani J, Le Gouët J, Gibert F et al. 2.05-µm all-fiber laser source designed for CO2 and wind coherent lidar measurement[J]. Applied Optics, 60, C12-C19(2021).

    [3] Holmen L G, Fonnum H. Holmium-doped fiber amplifier for pumping a ZnGeP2 optical parametric oscillator[J]. Optics Express, 29, 8477-8489(2021).

    [4] Yuan J H, Li C, Yao B Q et al. High power, tunable mid-infrared BaGa4Se7 optical parametric oscillator pumped by a 2.1 μm Ho∶YAG laser[J]. Optics Express, 24, 6083-6087(2016).

    [5] Bloom G, Grisard A, Lallier E et al. Optical parametric amplification of a distributed feedback quantum cascade laser in orientation-patterned GaAs[J]. Optics Letters, 35, 505-507(2010).

    [6] Wood C, Carpenter D, Lyngnes O. Laser damage testing for ion beam sputtered optical coatings at 2 μm and 3 μm[J]. Proceedings of SPIE, 8039, 803916(2011).

    [7] Hemming A, Simakov N, Haub J et al. A review of recent progress in holmium-doped silica fibre sources[J]. Optical Fiber Technology, 20, 621-630(2014).

    [8] Wu K S, Ottaway D, Munch J et al. Gain-switched holmium-doped fibre laser[J]. Optics Express, 17, 20872-20877(2009).

    [9] Hollitt S, Simakov N, Hemming A et al. A linearly polarised, pulsed Ho-doped fiber laser[J]. Optics Express, 20, 16285-16290(2012).

    [10] Yao W C, Shen C F, Shao Z H et al. High-power nanosecond pulse generation from an integrated Tm-Ho fiber MOPA over 2.1 μm[J]. Optics Express, 26, 8841-8848(2018).

    [11] Yan P, Sun J Y, Li D et al. 933 W Yb-doped fiber ASE amplifier with 50.4 nm bandwidth[J]. Optics Express, 24, 19940-19948(2016).

    [12] Wang Z F, Huang W, Li Z X et al. Progress and prospects of fiber gas laser sources (Ⅰ): based on stimulated Raman scattering[J]. Chinese Journal of Lasers, 48, 0401008(2021).

    [13] Russell P S J, Hölzer P, Chang W et al. Hollow-core photonic crystal fibres for gas-based nonlinear optics[J]. Nature Photonics, 8, 278-286(2014).

    [14] Benabid F, Knight J C, Antonopoulos G et al. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber[J]. Science, 298, 399-402(2002).

    [15] Benabid F, Bouwmans G, Knight J C et al. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen[J]. Physical Review Letters, 93, 123903(2004).

    [16] Wang Z F, Yu F, Wadsworth W J et al. Efficient 1.9 μm emission in H2-filled hollow core fiber by pure stimulated vibrational Raman scattering[J]. Laser Physics Letters, 11, 105807(2014).

    [17] Chen Y B, Wang Z F, Gu B et al. Achieving a 1.5 μm fiber gas Raman laser source with about 400 kW of peak power and a 6.3 GHz linewidth[J]. Optics Letters, 41, 5118-5121(2016).

    [18] Gladyshev A V, Kosolapov A F, Khudyakov M M et al. 4.4‑μm Raman laser based on hollow-core silica fibre[J]. Quantum Electronics, 47, 491-494(2017).

    [19] Cao L, Gao S F, Peng Z G et al. High peak power 2.8 μm Raman laser in a methane-filled negative-curvature fiber[J]. Optics Express, 26, 5609-5615(2018).

    [20] Astapovich M S, Gladyshev A V, Khudyakov M M et al. Watt-level nanosecond 4.42-μm Raman laser based on silica fiber[J]. IEEE Photonics Technology Letters, 31, 78-81(2019).

    [21] Huang W, Li Z X, Cui Y L et al. Efficient, watt-level, tunable 1.7 µm fiber Raman laser in H2-filled hollow-core fibers[J]. Optics Letters, 45, 475-478(2020).

    [22] Wang Y Z, Dasa M K, Adamu A I et al. High pulse energy and quantum efficiency mid-infrared gas Raman fiber laser targeting CO2 absorption at 4.2 µm[J]. Optics Letters, 45, 1938-1941(2020).

    [23] Zhu X Y, Wu D K, Wang Y Z et al. Delivery of CW laser power up to 300 watts at 1080 nm by an uncooled low-loss anti-resonant hollow-core fiber[J]. Optics Express, 29, 1492-1501(2021).

    [24] Wang Y Z, Schiess O T S, Amezcua-Correa R et al. CO2-based hollow-core fiber Raman laser with high-pulse energy at 1.95 µm[J]. Optics Letters, 46, 5133-5136(2021).

    [25] Zhang X, Peng Z G, Dong Z H et al. High-power mid-infrared 2.8‑μm ultrafast Raman laser based on methane-filled anti-resonant fiber[J]. IEEE Photonics Technology Letters, 34, 1007-1010(2022).

    [26] Huang W, Li Z X, Cui Y L et al. Experimental research on stimulated Raman scattering of deuterium gas in anti-resonance hollow-core fibers[J]. Chinese Journal of Lasers, 47, 0101001(2020).

    [27] Li H, Huang W, Pei W X et al. Continuous-wave 1.7 μm all-fiber gas Raman laser source[J]. Acta Optica Sinica, 41, 0314001(2021).

    [28] Sun Q. Stimulated Raman scattering based on gas-filled hollow-core photonic crystal fiber[D](2009).

    [29] Hanson F, Poirier P. Stimulated rotational Raman conversion in H2, D2, and HD[J]. IEEE Journal of Quantum Electronics, 29, 2342-2345(1993).

    Ziyan Li, Wenxi Pei, Hao Li, Wei Huang, Xuanxi Li, Zefeng Wang, Jinbao Chen. 2.15 μm All-Fiber Gas Raman Laser Source[J]. Acta Optica Sinica, 2023, 43(5): 0514003
    Download Citation