• Laser & Optoelectronics Progress
  • Vol. 55, Issue 10, 100005 (2018)
Jin Xiaoyu, Gui Jinbin*, Liu Chao, Zheng Liting, and Lou Yuli
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.100005 Cite this Article Set citation alerts
    Jin Xiaoyu, Gui Jinbin, Liu Chao, Zheng Liting, Lou Yuli. Progress of Fast Generation Algorithm of Computer-Generated Hologram Based on Point Source Model[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100005 Copy Citation Text show less
    References

    [1] Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777-778.

    [2] Zhu Y F. The direction of commercial laser holography[J]. Printing Technology, 2000(12): 76-77.

    [3] Kozma A, Kelly D L. Spatial filtering for detection of signals submerged in noise[J]. Applied Optics, 1965, 4(4): 387-392.

    [4] Armitage J D, Lohmann A W. Character recognition by incoherent spatial filtering[J]. Applied Optics, 1965, 4(4): 461-467.

    [5] Lohmann A W, Paris D P. Binary Fraunhofer holograms, generated by computer[J]. Applied Optics, 1967, 6(10): 1739-1748.

    [6] Goodman J W. Introduction to Fourier optics[M]. Qin K C, Liu P S, Chen J B, et al., Transl. 3rd ed. Beijing: Electronic Industry Press, 2011.

    [7] Li J C. Diffraction calculation and digital holography[M].Beijing: Science Press, 2014.

    [8] Jia J, Wang Y T, Liu J, et al. Progress of dynamic 3D display of the computer-generated hologram[J]. Laser & Optoelectronics Progress, 2012, 49(5): 050002.

    [9] Matsushima K, Nakahara S. Region segmentation and parallel processing for creating large-scale CGHs in polygon source method[J]. Proceedings of SPIE, 2009, 7233: 72330E.

    [10] Nishi H, Higashi K, Arima Y, et al. Smooth shading of specular surfaces in polygon-based high-definition CGH[C]∥2011 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video, May 16-18, 2011, Antalya, Turkey. New York: IEEE, 2011: 12070126.

    [11] Zhang Y P, Zhang J Q, Chen W, et al. Fast computer generated hologram algorithm of triangle mesh models[J]. Chinese Journal of Lasers, 2013, 40(7): 0709001.

    [12] Liu C, Gui J B, Li J C, et al. Fast generation algorithm of computer-generated hologram based on triangular surface light source frequency spectrum analytic solutions[J]. Laser & Optoelectronics Progress, 2018, 55(1): 010901.

    [13] Matsushima K, Nakahara S. New techniques for wave-field rendering of polygon-based high-definition CGHs[J]. Proceedings of SPIE, 2011, 7957: 79571A.

    [14] Lucente M E. Interactive computation of holograms using a look-up table[J]. Journal of Electronic Imaging, 1993, 2(1): 28-34.

    [15] Kim S C, Kim E S. Effective generation of digital holograms of three-dimensional objects using a novel look-up table method[J]. Applied Optics, 2008, 47(19): D55-D62.

    [16] Pan Y C, Xu X W, Solanki S, et al. Fast CGH computation using S-LUT on GPU[J]. Optics Express, 2009, 17(21): 18543-18555.

    [17] Jia J, Wang Y T, Liu J, et al. Reducing the memory usage for effective computer-generated hologram calculation using compressed look-up table in full-color holographic display[J]. Applied Optics, 2013, 52(7): 1404-1412.

    [18] Jiang X Y, Cong B, Pei C, et al. A new look-up table method of holographic algorithms based on compute unified device architecture parallel computing[J]. Acta Optica Sinica, 2015, 35(2): 0209001.

    [19] Shimobaba T, Masuda N, Ito T. Simple and fast calculation algorithm for computer-generated hologram with wavefront recording plane[J]. Optics Letters, 2009, 34(20): 3133-3135.

    [20] Shimobaba T, Nakayama H, Masuda N, et al. Rapid calculation algorithm of Fresnel computer-generated-hologram using look-up table and wavefront-recording plane methods for three-dimensional display[J]. Optics Express, 2010, 18(19): 19504-19509.

    [21] Phan A H, Piao M L, Gil S K, et al. Generation speed and reconstructed image quality enhancement of a long-depth object using double wavefront recording planes and a GPU[J]. Applied Optics, 2014, 53(22): 4817-4824.

    [22] Hasegawa N, Shimobaba T, Kakue T, et al. Acceleration of hologram generation by optimizing the arrangement of wavefront recording planes[J]. Applied Optics, 2017, 56(1): A97-A103.

    [23] Arai D, Shimobaba T, Nishitsuji T, et al. An accelerated hologram calculation using the wavefront recording plane method and wavelet transform[J]. Optics Communications, 2017, 393: 107-112.

    [24] Shimobaba T, Masuda N, Sugie T, et al. Special-purpose computer for holography HORN-3 with PLD technology[J]. Computer Physics Communications, 2000, 130(1/2): 75-82.

    [25] Shimobaba T, Hishinuma S, Ito T. Special-purpose computer for holography HORN-4 with recurrence algorithm[J]. Computer Physics Communications, 2002, 148(2): 160-170.

    [26] Ito T, Masuda N, Yoshimura K, et al. Special-purpose computer HORN-5 for a real-time electroholography[J]. Optics Express, 2005, 13(6): 1923-1932.

    [27] Ichihashi Y, Nakayama H, Ito T, et al. HORN-6 special-purpose clustered computing system for electroholography[J]. Optics Express, 2009, 17(16): 13895-13903.

    [28] Masuda N, Hirai D, Okada N, et al. Special purpose computer for phase modulation type electro-holography[C]∥Forum on Information Technology 2012, September 4-6, 2012, Hosei University, Tokyo, Japan. Tokyo: IECIE, 11(1): 285-286.

    [29] Watling J A, Lucente M E, Sparrell C J, et al. Hardware architecture for rapid generation of electro-holographic fringe patterns[J]. Proceedings of SPIE, 1995, 2406: 172-183.

    [30] Ritter A, Bttger J, Deussen O, et al. Hardware-based rendering of full-parallax synthetic holograms[J]. Applied Optics, 1999, 38(8): 1364-1369.

    [31] Ahrenberg L, Benzie P, Magnor M, et al. Computer generated holography using parallel commodity graphics hardware[J]. Optics Express, 2006, 14(17): 7636-7641.

    [32] Chen R H Y, Wilkinson T D. Computer generated hologram from point cloud using graphics processor[J]. Applied Optics, 2009, 48(36): 6841-6850.

    [33] Shimobaba T, Ito T, Masuda N, et al. Fast calculation of computer-generated-hologram on AMD HD5000 series GPU and OpenCL[J]. Optics Express, 2010, 18(10): 9955-9960.

    [34] Takada N, Shimobaba T, Nakayama H, et al. Fast high-resolution computer-generated hologram computation using multiple graphics processing unit cluster system[J]. Applied Optics, 2012, 51(30): 7303-7307.

    [35] Sugawara T, Ogihara Y, Sakamoto Y. Fast point-based method of a computer-generated hologram for a triangle-patch model by using a graphics processing unit[J]. Applied Optics, 2016, 55(3): A160-A166.

    Jin Xiaoyu, Gui Jinbin, Liu Chao, Zheng Liting, Lou Yuli. Progress of Fast Generation Algorithm of Computer-Generated Hologram Based on Point Source Model[J]. Laser & Optoelectronics Progress, 2018, 55(10): 100005
    Download Citation