• Chinese Journal of Quantum Electronics
  • Vol. 38, Issue 2, 180 (2021)
Pai SHAN1、2, Zujian WANG1、2, Rongbing SU1、2, Chao HE1、2, Xiaoming YANG1、2, and Xifa LONG1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2021.02.006 Cite this Article
    SHAN Pai, WANG Zujian, SU Rongbing, HE Chao, YANG Xiaoming, LONG Xifa. Research progress of quasi-phase matching deep-ultraviolet nonlinear optical crystals[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 180 Copy Citation Text show less
    References

    [1] Cyranoski D. Materials science: China’s crystal cache[J]. Nature, 2009, 457: 953-955.

    [2] Mutailipu M, Pan S. Emergent deep-ultraviolet nonlinear optical candidates[J]. Angewandte Chemie International Edition, 2020, 59: 20302-20317.

    [3] Tran T T, Yu H, Rondinelli J M, et al. Deep ultraviolet nonlinear optical materials[J]. Chemistry of Materials, 2016, 28: 5238-5258.

    [4] Meng J, Liu G, Zhang W, et al. Coexistence of Fermi arcs and Fermi pockets in a high-Tc copper oxide superconductor[J]. Nature, 2009, 462: 335-338.

    [5] Chen C T, Wang G L, Wang X Y, et al. Deep-UV nonlinear optical crystal KBe2BO3F2-discovery, growth, optical properties and applications[J]. Applied Physics B, 2009, 97: 9-25.

    [6] Chen J J. Characterization of Nonlinear Optical Properties of Deep-Ultraviolet Transparent BaMgF4 Crystal[D]. Shanghai: Shanghai Jiao Tong University, 2012.

    [7] Víllora E G, Shimamura K, Sumiya K, et al. Birefringent-and quasi phase-matching with BaMgF4 for vacuum-UV/UV and mid-IR all solid-state lasers[J]. Optics Express, 2009, 17: 12362-12378.

    [8] Shimamura K, Víllora E G, Zeng H, et al. Ferroelectric properties and poling of BaMgF4 for ultraviolet all solid-state lasers[J]. Applied Physics Letters, 2006, 89: 232911.

    [9] Buchter S C, Fan T Y, Liberman V, et al. Periodically poled BaMgF4 for ultraviolet frequency generation[J]. Optics Letters, 2001, 26: 1693-1695.

    [10] Bergman J G, Crane G R, Guggenheim H. Linear and nonlinear optical properties of ferroelectric BaMgF4 and BaZnF4[J]. Journal of Applied Physics, 1975, 46: 4645-4646.

    [11] Wang Z, Qiao H, Su R, et al. Mg3B7O13Cl: A new quasi-phase matching crystal in the deep-ultraviolet region[J]. Advanced Functional Materials, 2018, 28: 1804089.

    [12] Xiong Z, He J, Hu B, et al. Zn3B7O13Cl: A new deep-ultraviolet transparency nonlinear optical crystal with boracite structure[J]. ACS Applied Materials Interfaces, 2020, 12: 42942-42948.

    [13] Zagudailova M B, Plachinda P A, Berdonosov P S, et al. Second harmonic generation in boracites[J]. Inorganic Materials, 2005, 41: 393-396.

    [14] Wang Z, He J, Hu B, et al. Ca2B5O9Cl and Sr2B5O9Cl: Nonlinear optical crystals with deep-ultraviolet transparency windows[J]. ACS Applied Materials Interfaces, 2020, 12: 4632-4637.

    [15] Bither T A, Young H S. Nitrate-and fluoroboracites M3B7O13NO3 and M3B7O13F[J]. Journal of Solid State Chemistry, 1974, 10: 302-311.

    [16] Kaminskii A A, Butashin A V, maslyanizin I A, et al. Pure and Nd3+-, Pr3+-ion doped trigonal acentric LaBGeO5 single crystals[J]. Physica Status Solidi (a), 1991, 125: 671.

    [17] Stefanovich S Y, Mill B V, Butashin A V. Ferroelectricity and phase-transitions in LaBGeO5 stilvellite[J]. Kristallografiya, 1992, 37: 965-970.

    [18] Milov E, Milov V, Strukov B, et al. Polarization switching and domain structure in LaBGeO5 crystals[J]. Ferroelectrics, 2011, 341: 39-48.

    [19] Strukov B A, Milov E V, Milov V N, et al. Switching processes and formation of the stable artificial domain structure in ferroelectric LaBGeO5[J]. Ferroelectrics, 2005, 314: 105-113.

    [20] Miyazawa S, Kanamori T, Ichikawa S, et al. Cz-growth of ferroelectric LaBGeO5 single crystals[C]. CLEO/Europe and EQEC 2011.

    SHAN Pai, WANG Zujian, SU Rongbing, HE Chao, YANG Xiaoming, LONG Xifa. Research progress of quasi-phase matching deep-ultraviolet nonlinear optical crystals[J]. Chinese Journal of Quantum Electronics, 2021, 38(2): 180
    Download Citation