• Opto-Electronic Engineering
  • Vol. 44, Issue 10, 997 (2017)
Jiangning Zhou1、2 and Bincheng Li1、3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1003-501x.2017.10.008 Cite this Article
    Jiangning Zhou, Bincheng Li. Measurement of Si―OH content in fused silica with extended dynamic range by Fourier transform infrared spectroscopy[J]. Opto-Electronic Engineering, 2017, 44(10): 997 Copy Citation Text show less
    References

    [1] Morimoto Y,Nozawa S, Hosono H. Effect of Xe2* light (7.2 eV) on the infrared and vacuum ultraviolet absorption properties of hydroxyl groups in silica glass[J]. Physical Review B, 1999, 59(6): 4066–4073.

    [2] Kajihara K,Skuja L,Hirano M,et al. In situ observation of the formation, diffusion, and reactions of hydrogenous species in F2-laser-irradiated SiO2 glass using a pump-and-probe tech-nique[J]. Physical Review B, 2006, 74(9): 094202.

    [3] Skuja L,Kajihara K,Hirano M,et al. Visible to vacuum-UV range optical absorption of oxygen dangling bonds in amorphous SiO2[J]. Physical Review B, 2011, 84(20): 205206.

    [4] Schr der S, Kamprath M, Duparré A, et al. Bulk scattering properties of synthetic fused silica at 193 nm[J]. Optics Express, 2006, 14(22): 10537–10549.

    [5] Kühn B, Uebbing B, Stamminger M, et al. Compaction versus expansion behavior related to the OH-content of synthetic fused silica under prolonged UV-laser irradiation[J]. Journal of Non-Crystalline Solids, 2003, 330(1-3): 23–32.

    [6] Humbach O, Fabian H, Grzesik U, et al. Analysis of OH ab-sorption bands in synthetic silica[J]. Journal of Non-Crystalline Solids, 1996, 203(1): 19–26.

    [7] Ebendorff-Heidepriem H, Kuan K, Oermann M R, et al. Extruded tellurite glass and fibers with low OH content for mid-infrared applications[J]. Optical Materials Express, 2012, 2(4): 432–442.

    [8] Hild S, Lück H, Winkler W, et al. Measurement of a low-absorption sample of OH-reduced fused silica[J]. Applied Optics, 2006, 45(28): 7269–7272.

    [9] Mercier M, Di Muro A, Métrich N, et al. Spectroscopic analysis (FTIR, Raman) of water in mafic and intermediate glasses and glass inclusions[J]. Geochimicaet Cosmochimica Acta, 2010, 74(19): 5641–5656.

    [10] Stolen R H, Walrafen G E. Water and its relation to broken bond defects in fused silica[J]. The Journal of Chemical Physics, 1976, 64(6): 2623–2631.

    [11] Galeener F L, Mikkelsen Jr J C. Raman diffusion profilometry:OH in vitreous SiO2[J]. Applied Physics Letters, 1981, 38(5): 336–338.

    [12] Davis K M, Tomozawa M. An infrared spectroscopic study of water-related species in silica glasses[J]. Journal of Non-Crystalline Solids, 1996, 201(3): 177–198.

    [13] DeRosa R L, Schader P A, Shelby J E. Hydrophilic nature of silicate glass surfaces as a function of exposure condition[J]. Journal of Non-Crystalline Solids, 2003, 331(1-3): 32–40.

    [14] Agrinier P, Jendrzejewski N. Overcoming problems of density and thickness measurements in FTIR volatile determinations: a spectroscopic approach[J]. Contributions to Mineralogy and Petrology, 2000, 139(3): 265–272.

    [15] Davis K M, Agarwal A, Tomozawa M, et al. Quantitative infrared spectroscopic measurement of hydroxyl concentrations in silica glass[J]. Journal of Non-Crystalline Solids, 1996, 203(1): 27–36.

    [16] Cremers D A, Radziemski L J. Handbook of laser-induced breakdown spectroscopy[M]. Chichester: John Wiley & Sons, 2006: 115.

    CLP Journals

    [1] Lu Xiangyang, Sun Lijuan, Fang Xiangqian, Hu Jin, Jia Lijuan. Scattering effect analysis of elastic wave concentrator based on FRFT[J]. Opto-Electronic Engineering, 2018, 45(6): 170739

    Jiangning Zhou, Bincheng Li. Measurement of Si―OH content in fused silica with extended dynamic range by Fourier transform infrared spectroscopy[J]. Opto-Electronic Engineering, 2017, 44(10): 997
    Download Citation