• Laser & Optoelectronics Progress
  • Vol. 59, Issue 7, 0700001 (2022)
Tiejun Wang1、2、*, Na Chen1、2, Hao Guo1、2, Yaoxiang Liu1、2, Yuxin Leng1、2, and Ruxin Li1、2
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics and Chinese Academy of Sciences, Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing , 100049, China
  • show less
    DOI: 10.3788/LOP202259.0700001 Cite this Article Set citation alerts
    Tiejun Wang, Na Chen, Hao Guo, Yaoxiang Liu, Yuxin Leng, Ruxin Li. Principle and Research Progress of Atmospheric Remote Sensing by Intense Femtosecond Lasers[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0700001 Copy Citation Text show less
    References

    [1] Tian X M, Liu D, Xu J W et al. Review on atmospheric detection Lidar network and spaceborne Lidar technology[J]. Journal of Atmospheric and Environmental Optics, 13, 401-416(2018).

    [2] Wang Y Z, Zheng Y C. Technology and application of space-borne atmospheric detection Lidar[J]. Aerospace Shanghai (Chinese & English), 37, 125-134(2020).

    [3] Fattahi H, Barros H G, Gorjan M et al. Third-generation femtosecond technology[J]. Optica, 1, 45-63(2014).

    [4] Kasparian J, Rodriguez M, Méjean G et al. White-light filaments for atmospheric analysis[J]. Science, 301, 61-64(2003).

    [5] Wolf J P. Short-pulse lasers for weather control[J]. Reports on Progress in Physics, 81, 026001(2018).

    [6] Chin S L, Xu H L, Luo Q et al. Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source[J]. Applied Physics B, 95, 1-12(2009).

    [7] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 441, 47-189(2007).

    [8] Chin S L, Hosseini S A, Liu W et al. The propagation of powerful femtosecond laser pulses in opticalmedia: physics, applications, and new challenges[J]. Canadian Journal of Physics, 83, 863-905(2005).

    [9] Bergé L, Skupin S, Nuter R et al. Ultrashort filaments of light in weakly ionized, optically transparent media[J]. Reports on Progress in Physics, 70, 1633-1713(2007).

    [10] Chin S L[M]. Femtosecond laser filamentation(2010).

    [11] Chin S L, Wang T J, Marceau C et al. Advances in intense femtosecond laser filamentation in air[J]. Laser Physics, 22, 1-53(2012).

    [12] Durand M, Houard A, Prade B et al. Kilometer range filamentation[J]. Optics Express, 21, 26836-26845(2013).

    [13] Rodriguez M, Bourayou R, Méjean G et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E, 69, 036607(2004).

    [14] Chen X W, Li X F, Liu J et al. Generation of 5 fs, 0.7 mJ pulses at 1 kHz through cascade filamentation[J]. Optics Letters, 32, 2402-2404(2007).

    [15] Kiselev D, Woeste L, Wolf J P. Filament-induced laser machining (FILM)[J]. Applied Physics B, 100, 515-520(2010).

    [16] Wang T J, Wei Y X, Liu Y X et al. Direct observation of laser guided corona discharges[J]. Scientific Reports, 5, 18681(2015).

    [17] Labutin T A, Lednev V N, Ilyin A A et al. Femtosecond laser-induced breakdown spectroscopy[J]. Journal of Analytical Atomic Spectrometry, 31, 90-118(2016).

    [18] Xu H L, Cheng Y, Chin S L et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 9, 275-293(2015).

    [19] Chen N, Liu Y X, Du S Z et al. Research progress in applications of nanosecond and femtosecond laser-induced breakdown spectroscopy[J]. Laser & Optoelectronics Progress, 53, 050003(2016).

    [20] Bergé L, Skupin S, Méjean G et al. Supercontinuum emission and enhanced self-guiding of infrared femtosecond filaments sustained by third-harmonic generation in air[J]. Physical Review E, 71, 016602(2005).

    [21] Dharmadhikari A K, Edward S, Dharmadhikari J A et al. On the generation of polarization-dependent supercontinuum and third harmonic in air[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 48, 094012(2015).

    [22] Braun A, Korn G, Liu X et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 20, 73-75(1995).

    [23] Dharmadhikari A K, Rajgara F A, Mathur D. Plasma effects and the modulation of white light spectra in the propagation of ultrashort, high-power laser pulses in Barium fluoride[J]. Applied Physics B, 82, 575-583(2006).

    [24] Chen N, Wang T J, Zhu Z B et al. Laser ellipticity-dependent supercontinuum generation by femtosecond laser filamentation in air[J]. Optics Letters, 45, 4444-4447(2020).

    [25] Aközbek N, Scalora M, Bowden C M et al. White-light continuum generation and filamentation during the propagation of ultra-short laser pulses in air[J]. Optics Communications, 191, 353-362(2001).

    [26] Théberge F, Châteauneuf M, Ross V et al. Ultrabroadband conical emission generated from the ultraviolet up to the far-infrared during the optical filamentation in air[J]. Optics Letters, 33, 2515-2517(2008).

    [27] Yao J P, Cheng Y. Air lasing: novel effects in strong laser fields and new technology in remote sensing[J]. Chinese Journal of Lasers, 47, 0500005(2020).

    [28] Li H L, Wang S Q, Fu Y et al. Air lasing: principle, generation, and applications[J]. Chinese Journal of Lasers, 47, 0500017(2020).

    [29] Polynkin P, Cheng Y[M]. Air lasing(2018).

    [30] Yuan L Q, Liu Y, Yao J P et al. Recent advances in air lasing: a perspective from quantum coherence[J]. Advanced Quantum Technologies, 2, 1900080(2019).

    [31] Li H L, Yao D W, Wang S Q et al. Air lasing: phenomena and mechanisms[J]. Chinese Physics B, 28, 114204(2019).

    [32] Kasparian J, Sauerbrey R, Chin S L. The critical laser intensity of self-guided light filaments in air[J]. Applied Physics B, 71, 877-879(2000).

    [33] Stelmaszczyk K, Rohwetter P, Méjean G et al. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air[J]. Applied Physics Letters, 85, 3977-3979(2004).

    [34] Weidman M, Lim K, Ramme M et al. Stand-off filament-induced ablation of gallium arsenide[J]. Applied Physics Letters, 101, 034101(2012).

    [35] Gao X, Du C, Li C et al. Detection of heavy metal Cr in soil by the femtosecond filament induced breakdown spectroscopy[J]. Acta Physica Sinica, 63, 095203(2014).

    [36] Guo H, Zhu Z B, Wang T J et al. Polarization-gated filament-induced remote breakdown spectroscopy[J]. Chinese Optics Letters, 16, 033201(2018).

    [38] Rohwetter P, Yu J, Méjean G et al. Remote LIBS with ultrashort pulses: characteristics in picosecond and femtosecond regimes[J]. Journal of Analytical Atomic Spectrometry, 19, 437-444(2004).

    [39] Wille H, Rodriguez M, Kasparian J et al. Teramobile: a mobile femtosecond-terawatt laser and detection system[J]. The European Physical Journal Applied Physics, 20, 183-190(2002).

    [40] Rohwetter P, Stelmaszczyk K, Wöste L et al. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 60, 1025-1033(2005).

    [41] Tzortzakis S, Anglos D, Gray D. Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring[J]. Optics Letters, 31, 1139-1141(2006).

    [42] Mirell D, Chalus O, Peterson K et al. Remote sensing of explosives using infrared and ultraviolet filaments[J]. Journal of the Optical Society of America B, 25, B108-B111(2008).

    [43] Judge E J, Heck G, Cerkez E B et al. Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy[J]. Analytical Chemistry, 81, 2658-2663(2009).

    [44] Xu H L, Kamali Y, Marceau C et al. Simultaneous detection and identification of multigas pollutants using filament-induced nonlinear spectroscopy[J]. Applied Physics Letters, 90, 101106(2007).

    [45] Daigle J F, Kamali Y, Roy G et al. Remote filament-induced fluorescence spectroscopy from thin clouds of smoke[J]. Applied Physics B, 93, 759-762(2008).

    [46] Xu H L, Liu W, Chin S L. Remote time-resolved filament-induced breakdown spectroscopy of biological materials[J]. Optics Letters, 31, 1540-1542(2006).

    [47] Liu W, Xu H L, Méjean G et al. Efficient non-gated remote filament-induced breakdown spectroscopy of metallic sample[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 76-81(2007).

    [48] Daigle J F, Méjean G, Liu W et al. Long range trace detection in aqueous aerosol using remote filament-induced breakdown spectroscopy[J]. Applied Physics B, 87, 749-754(2007).

    [49] Kamali Y, Daigle J F, Théberge F et al. Remote sensing of trace methane using mobile femtosecond laser system of T&T Lab[J]. Optics Communications, 282, 2062-2065(2009).

    [50] Wang T J, Xu H, Daigle J F et al. Water vapor concentration measurement in air using filament-induced fluorescence spectroscopy[J]. Optics Letters, 37, 1706-1708(2012).

    [51] Yuan S, Wang T J, Lu P F et al. Humidity measurement in air using filament-induced nitrogen monohydride fluorescence spectroscopy[J]. Applied Physics Letters, 104, 091113(2014).

    [52] Yuan S, Wang T J, Teranishi Y et al. Lasing action in water vapor induced by ultrashort laser filamentation[J]. Applied Physics Letters, 102, 224102(2013).

    [53] Zeng B, Wang T J, Hosseini S et al. Enhanced remote filament-induced breakdown spectroscopy with spatio-temporally chirped pulses[J]. Journal of the Optical Society of America B, 29, 3226-3230(2012).

    [54] Burger M, Finney L A, Garrett L et al. Laser ablation spectrometry for studies of uranium plasmas, reactor monitoring, and spent fuel safety[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 179, 106095(2021).

    [55] Shaik A K, Epuru N R, Syed H et al. Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis[J]. Optics Express, 26, 8069-8083(2018).

    [56] Finney L A, Skrodzki P J, Burger M et al. Single-shot, multi-signature remote detection of uranium by filament-induced breakdown spectroscopy[J]. Optics Letters, 44, 2783-2786(2019).

    [57] Burger M, Skrodzki P J, Finney L A et al. Remote detection of uranium using self-focusing intense femtosecond laser pulses[J]. Remote Sensing, 12, 1281(2020).

    [58] Kasparian J, Sauerbrey R, Mondelain D et al. Infrared extension of the super continuum generated by femtosecond terawatt laser pulses propagating in the atmosphere[J]. Optics Letters, 25, 1397-1399(2000).

    [59] Guo H, Dong X, Wang T J et al. Polarization dependent clamping intensity inside a femtosecond filament in air[J]. Chinese Optics Letters, 19, 103201(2021).

    [60] Liu Y X, Wang T J, Chen N et al. Simultaneous generation of controllable double white light lasers by focusing an intense femtosecond laser pulse in air[J]. Chinese Optics Letters, 18, 121402(2020).

    [61] Platt U, Stutz J. Differential absorption spectroscopy[M]. Physics of earth and space environments, 135-174(2008).

    [62] Rairoux P, Schillinger H, Niedermeier S et al. Remote sensing of the atmosphere using ultrashort laser pulses[J]. Applied Physics B, 71, 573-580(2000).

    [63] Wöste L, Wedekind C, Wille H et al. Femtosecond atmospheric lamp[J]. Laser Optoelektron, 29, 51(1997).

    [64] Bourayou R, Méjean G, Kasparian J et al. White-light filaments for multiparameter analysis of cloud microphysics[J]. Journal of the Optical Society of America B, 22, 369-377(2005).

    [65] Béjot P, Bonacina L, Extermann J et al. 32 TW atmospheric white-light laser[J]. Applied Physics Letters, 90, 151106(2007).

    [66] Zhang L W, Lin C, Xin L et al. New remote sensing system: white-light Lidar[J]. High Power Laser and Particle Beams, 20, 1603-1607(2008).

    [67] Yue S Y, Lin C, Gao J Y. Development and application of white-light Lidar[J]. Journal of Atmospheric and Environmental Optics, 5, 1-13(2010).

    [68] Rohwetter P, Kasparian J, Stelmaszczyk K et al. Laser-induced water condensation in air[J]. Nature Photonics, 4, 451-456(2010).

    [69] Petit Y, Henin S, Nakaema W M et al. 1-J white-light continuum from 100-TW laser pulses[J]. Physical Review A, 83, 013805(2011).

    [70] Petrarca M, Henin S, Berti N et al. White-light femtosecond Lidar at 100 TW power level[J]. Applied Physics B, 114, 319-325(2014).

    [71] Dicaire I, Jukna V, Praz C et al. Spaceborne laser filamentation for atmospheric remote sensing[J]. Laser & Photonics Reviews, 10, 481-493(2016).

    Tiejun Wang, Na Chen, Hao Guo, Yaoxiang Liu, Yuxin Leng, Ruxin Li. Principle and Research Progress of Atmospheric Remote Sensing by Intense Femtosecond Lasers[J]. Laser & Optoelectronics Progress, 2022, 59(7): 0700001
    Download Citation