• Journal of Inorganic Materials
  • Vol. 37, Issue 12, 1302 (2022)
Dan LIU*, Yaxin ZHAO, Rui GUO, Yantao LIU, Zhidong ZHANG, Zengxing ZHANG, and Chenyang XUE
DOI: 10.15541/jim20220107 Cite this Article
Dan LIU, Yaxin ZHAO, Rui GUO, Yantao LIU, Zhidong ZHANG, Zengxing ZHANG, Chenyang XUE. Effect of Annealing Conditions on Thermoelectric Properties of Magnetron Sputtered MgO-Ag3Sb-Sb2O4 Flexible Films[J]. Journal of Inorganic Materials, 2022, 37(12): 1302 Copy Citation Text show less
References

[1] A R M SIDDIQUE, S MAHMUD, B V HEYST. A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges. Renewable and Sustainable Energy Reviews, 730-744(2017). https://linkinghub.elsevier.com/retrieve/pii/S1364032117301910

[2] M A M HASAN, H WU, Y YANG. Redox-induced electricity for energy scavenging and self-powered sensors. Journal of Materials Chemistry A, 19116-19148(2021). http://xlink.rsc.org/?DOI=D1TA02287C

[3] H SHANG, H GU, F DING et al. Recent advances in flexible thermoelectrics. Applied Physics Letters, 170503(2021). https://aip.scitation.org/doi/10.1063/5.0049451

[4] A KUMAR, S BANO, B GOVIND et al. A review on fundamentals, design and optimization to high ZT of thermoelectric materials for application to thermoelectric technology. Journal of Electronic Materials, 6037-6059(2021). https://doi.org/10.1007/s11664-021-09153-7

[5] Z FAN, Y ZHANG, L PAN et al. Recent developments in flexible thermoelectrics: from materials to devices. Renewable and Sustainable Energy Reviews, 110448(2021). https://linkinghub.elsevier.com/retrieve/pii/S1364032120307358

[6] N JAZIRI, A BOUGHAMOURA, J MÜLLER et al. A comprehensive review of thermoelectric generators: technologies and common applications. Energy Reports, 264-287(2020).

[7] Q H ZHANG, X Y HUANG, S Q BAI et al. Thermoelectric devices for power generation: recent progress and future challenges. Advanced Engineering Materials, 194-213(2016). https://onlinelibrary.wiley.com/doi/10.1002/adem.201500333

[8] M RIMOLDI, R CECCHINI, C WIEMER et al. Effect of substrates and thermal treatments on metalorganic chemical vapor deposition-grown Sb2Te3 thin films. Crystal Growth & Design, 5135-5144(2021). https://pubs.acs.org/doi/10.1021/acs.cgd.1c00508

[9] B CHEN, M KRUSE, B XU et al. Flexible thermoelectric generators with inkjet-printed bismuth telluride nanowires and liquid metal contacts. Nanoscale, 5222-5230(2019).

[10] C HAN, G TAN, T VARGHESE et al. High-performance PbTe thermoelectric films by scalable and low-cost printing. ACS Energy Letters, 818-822(2018). https://pubs.acs.org/doi/10.1021/acsenergylett.8b00041

[11] D L WEN, X LIU, J F BAO et al. Flexible hybrid photo- thermoelectric generator based on single thermoelectric effect for simultaneously harvesting thermal and radiation energies. ACS Applied Materials & Interfaces, 21401-21410(2021).

[12] M GOTO, M SASAKI, Y XU et al. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology. Applied Surface Science, 405-411(2017). https://linkinghub.elsevier.com/retrieve/pii/S0169433217305603

[13] A KOBAYASHI, R KONAGAYA, S TANAKA et al. Optimized structure of tubular thermoelectric generators using n-type Bi2Te3 and p-type Sb2Te3 thin films on flexible substrate for energy harvesting. Sensors and Actuators A: Physical, 112199(2020). https://linkinghub.elsevier.com/retrieve/pii/S0924424720307044

[14] A GHOSH, M AHMAD, P BISHT et al. Modifying the thermoelectric transport of Sb2Te3 thin films via the carrier filtering effect by incorporating size-selected gold nanoparticles. ACS Applied Materials & Interfaces, 13226-13234(2021).

[15] M J KIRKHAM, A M D SANTOS, C J RAWN et al. Ab initio determination of crystal structures of the thermoelectric material MgAgSb. Physical Review B, 144120(2012). https://link.aps.org/doi/10.1103/PhysRevB.85.144120

[16] H ZHAO, J SUI, Z TANG et al. High thermoelectric performance of MgAgSb-based materials. Nano Energy, 97-103(2014). https://linkinghub.elsevier.com/retrieve/pii/S2211285514000688

[17] Z LIU, J SHUAI, J MAO et al. Effects of antimony content in MgAg0.97Sbx on output power and energy conversion efficiency. Acta Materialia, 17-23(2016). https://linkinghub.elsevier.com/retrieve/pii/S1359645415007144

[18] Z LIU, W GAO, X MENG et al. Mechanical properties of nanostructured thermoelectric materials α-MgAgSb. Scripta Materialia, 72-75(2017). https://linkinghub.elsevier.com/retrieve/pii/S1359646216304158

[19] Z LIU, Y WANG, W GAO et al. The influence of doping sites on achieving higher thermoelectric performance for nanostructured α-MgAgSb. Nano Energy, 194-200(2017). https://linkinghub.elsevier.com/retrieve/pii/S2211285516304943

[20] Z LIU, Y ZHANG, J MAO et al. The microscopic origin of low thermal conductivity for enhanced thermoelectric performance of Yb doped MgAgSb. Acta Materialia, 227-234(2017). https://linkinghub.elsevier.com/retrieve/pii/S1359645417301064

[21] W GAO, X YI, B CUI et al. The critical role of boron doping in the thermoelectric and mechanical properties of nanostructured α-MgAgSb. Journal of Materials Chemistry C, 9821-9827(2018). http://xlink.rsc.org/?DOI=C8TC03646B

[22] N OUELDNA, A PORTAVOCE, M BERTOGLIO et al. Seebeck coefficient in multiphase thin films. Materials Letters, 127460(2020). https://linkinghub.elsevier.com/retrieve/pii/S0167577X20301658

[23] N OUELDNA, A PORTAVOCE, M BERTOGLIO et al. Phase transitions in thermoelectric Mg-Ag-Sb thin films. Journal of Alloys and Compounds, 163534(2022). https://linkinghub.elsevier.com/retrieve/pii/S0925838821049446

[24] J ZHAI, T WANG, H WANG et al. Strategies for optimizing the thermoelectricity of PbTe alloys. Chinese Physics B, 047306(2018). https://iopscience.iop.org/article/10.1088/1674-1056/27/4/047306

[25] N J HINES, L YATES, B M FOLEY et al. Steady-state methods for measuring in-plane thermal conductivity of thin films for heat spreading applications. Review of Scientific Instruments, 044907(2021). https://aip.scitation.org/doi/10.1063/5.0039966

[26] Z H ZHENG, D L ZHANG, J Y NIU et al. Achieving ultrahigh power factor in n-type Ag2Se thin films by carrier engineering. Materials Today Energy, 100933(2022). https://linkinghub.elsevier.com/retrieve/pii/S2468606921002987

[27] X ZENG, L REN, J XIE et al. Room-temperature welding of silver telluride nanowires for high-performance thermoelectric film. ACS Applied Materials & Interfaces, 37892-37900(2019).

[28] D LIU, Y ZHAO, Z YAN et al. Screen-printed flexible thermoelectric device based on hybrid silver selenide/PVP composite films. Nanomaterials, 2042(2021). https://www.mdpi.com/2079-4991/11/8/2042

[29] Y DING, Y QIU, K CAI et al. High performance n-type Ag2Se film on Nylon membrane for flexible thermoelectric power generator. Nature Communications, 841(2019). https://doi.org/10.1038/s41467-019-08835-5

[30] C JIANG, Y DING, K CAI et al. Ultrahigh performance of n-Type Ag2Se films for flexible thermoelectric power generators. ACS Applied Materials & Interfaces, 9646-9655(2020).

Dan LIU, Yaxin ZHAO, Rui GUO, Yantao LIU, Zhidong ZHANG, Zengxing ZHANG, Chenyang XUE. Effect of Annealing Conditions on Thermoelectric Properties of Magnetron Sputtered MgO-Ag3Sb-Sb2O4 Flexible Films[J]. Journal of Inorganic Materials, 2022, 37(12): 1302
Download Citation