• Photonics Research
  • Vol. 6, Issue 10, 929 (2018)
Ernesto Jimenez-Villar1、2、*, M. C. S. Xavier2、3, Niklaus U. Wetter1, Valdeci Mestre4, Weliton S. Martins5, Gabriel F. Basso6, V. A. Ermakov7, F. C. Marques7, and Gilberto F. de Sá8
Author Affiliations
  • 1Instituto de Pesquisas Energéticas e Nucleares, CNEN_IPEN, São Paulo, SP 05508-000, Brazil
  • 2Departamento de Física, Universidade Federal da Paraíba, João Pessoa, PB 58051-970, Brazil
  • 3Departamento de Física, Universidade Estadual da Paraíba, Araruna, PB 58233-000, Brazil
  • 4CCEA, Universidade Estadual da Paraíba, Patos, PB 58706-560, Brazil
  • 5Departamento de Física, Universidade Federal Rural de Pernambuco, Recife, PE 52171-900, Brazil
  • 6Departamento de Informática, Universidade Federal da Paraíba, Joao Pessoa, PB 58055-000, Brazil
  • 7Departamento de Física Aplicada, Universidade Estadual de Campinas, Campinas, SP 13083-859, Brazil
  • 8Química Fundamental, Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
  • show less
    DOI: 10.1364/PRJ.6.000929 Cite this Article Set citation alerts
    Ernesto Jimenez-Villar, M. C. S. Xavier, Niklaus U. Wetter, Valdeci Mestre, Weliton S. Martins, Gabriel F. Basso, V. A. Ermakov, F. C. Marques, Gilberto F. de Sá. Anomalous transport of light at the phase transition to localization: strong dependence with incident angle[J]. Photonics Research, 2018, 6(10): 929 Copy Citation Text show less
    References

    [1] S. John. Electromagnetic absorption in a disordered medium near a photon mobility edge. Phys. Rev. Lett., 53, 2169-2172(1984).

    [2] P. W. Anderson. The question of classical localization: a theory of white paint?. Philos. Mag. B, 52, 505-509(1985).

    [3] S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 58, 2486-2489(1987).

    [4] S. John. Localization of light. Phys. Today, 44, 32-40(1991).

    [5] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner. Demonstration of a spaser-based nanolaser. Nature, 460, 1110-1112(2009).

    [6] E. Jiménez-Villar, I. F. da Silva, V. Mestre, P. C. de Oliveira, W. M. Faustino, G. F. de Sá. Anderson localization of light in a colloidal suspension (TiO2@silica). Nanoscale, 8, 10938-10946(2016).

    [7] E. Jiménez-Villar, M. C. S. Xavier, J. G. G. S. Ramos, N. U. Wetter, V. Mestre, W. S. Martins, G. F. Basso, V. A. Ermakov, F. C. Marques, G. F. de Sá. Localization of light: beginning of a new optics. Proc. SPIE, 10549, 1054905(2018).

    [8] A. F. Ioffe, A. R. Regel. Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semicond., 4, 237-291(1960).

    [9] L. Bressel, R. Hass, O. Reich. Particle sizing in highly turbid dispersions by photon density wave spectroscopy. J. Quant. Spectrosc. Radiat. Transfer, 126, 122-129(2013).

    [10] J.-P. Bouchaud, A. Georges. Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep., 195, 127-293(1990).

    [11] P. Tierno, F. Sagués, T. H. Johansen, I. M. Sokolov. Antipersistent random walk in a two state flashing magnetic potential. Phys. Rev. Lett., 109, 070601(2012).

    [12] E. Abrahams, P. W. Anderson, D. C. Licciardello, T. V. Ramakrishnan. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 42, 673-676(1979).

    [13] F. Evers, A. D. Mirlin. Anderson transitions. Rev. Mod. Phys., 80, 1355-1417(2008).

    [14] S. E. Skipetrov, J. H. Page. Red light for Anderson localization. New J. Phys., 18, 021001(2016).

    [15] J. M. Escalante, S. E. Skipetrov. Longitudinal optical fields in light scattering from dielectric spheres and Anderson localization of light. Ann. Phys., 529, 1700039(2017).

    [16] D. S. Wiersma, P. Bartolini, A. Lagendijk, R. Righini. Localization of light in a disordered medium. Nature, 390, 671-673(1997).

    [17] M. Störzer, P. Gross, C. M. Aegerter, G. Maret. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett., 96, 063904(2006).

    [18] T. Sperling, W. Bührer, C. M. Aegerter, G. Maret. Direct determination of the transition to localization of light in three dimensions. Nat. Photonics, 7, 48-52(2013).

    [19] F. Scheffold, R. Lenke, R. Tweer, G. Maret. Localization or classical diffusion of light?. Nature, 398, 206-207(1999).

    [20] F. Scheffold, D. Wiersma. Inelastic scattering puts in question recent claims of Anderson localization of light. Nat. Photonics, 7, 934(2013).

    [21] T. Van Der Beek, P. Barthelemy, P. M. Johnson, D. S. Wiersma, A. Lagendijk. Light transport through disordered layers of dense gallium arsenide submicron particles. Phys. Rev. B, 85, 115401(2012).

    [22] T. Sperling, L. Schertel, M. Ackermann, G. J. Aubry, C. M. Aegerter, G. Maret. Can 3D light localization be reached in ‘white paint’?. New J. Phys., 18, 013039(2016).

    [23] A. A. Chabanov, M. Stoytchev, A. Z. Genack. Statistical signatures of photon localization. Nature, 404, 850-853(2000).

    [24] E. Jimenez-Villar, V. Mestre, W. S. Martins, G. F. Basso, I. F. da Silva, G. F. de Sá. Core-shell TiO2@Silica nanoparticles for light confinement. Mater. Today, 4, 11570-11579(2017).

    [25] A. F. Demirörs, A. van Blaaderen, A. Imhof. Synthesis of eccentric titania-silica core-shell and composite particles. Chem. Mater., 21, 979-984(2009).

    [26] K. Abderrafi, E. Jiménez, T. Ben, S. I. Molina, R. Ibáñez, V. Chirvony, J. P. Martínez-Pastor. Production of nanometer-size GaAs nanocristals by nanosecond laser ablation in liquid. J. Nanosci. Nanotechnol., 12, 6774-6778(2012).

    [27] E. Jimenez-Villar, V. Mestre, P. C. de Oliveira, G. F. de Sá. Novel core-shell (TiO2@Silica) nanoparticles for scattering medium in a random laser: higher efficiency, lower laser threshold and lower photodegradation. Nanoscale, 5, 12512-12517(2013).

    [28] S. E. Skipetrov, I. M. Sokolov. Absence of Anderson localization of light in a random ensemble of point scatterers. Phys. Rev. Lett., 112, 023905(2014).

    [29] E. Jimenez-Villar, V. Mestre, P. C. de Oliveira, W. M. Faustino, D. S. Silva, G. F. de Sá. TiO2@Silica nanoparticles in a random laser: strong relationship of silica shell thickness on scattering medium properties and random laser performance. Appl. Phys. Lett., 104, 081909(2014).

    [30] E. Rodriguez, E. Jimenez, G. J. Jacob, A. A. R. Neves, C. L. Cesar, L. C. Barbosa. Fabrication and characterization of a PbTe quantum dots multilayer structure. Physica E, 26, 361-365(2005).

    [31] E. Rodriguez, G. Kellermann, A. F. Craievich, E. Jimenez, C. L. César, L. C. Barbosa. All-optical switching device for infrared based on PbTe quantum dots. Superlattices Microstruct., 43, 626-634(2008).

    [32] E. Jiménez, K. Abderrafi, R. Abargues, J. L. Valdés, J. P. Martínez-Pastor. Laser-ablation-induced synthesis of SiO2-capped noble metal nanoparticles in a single step. Langmuir, 26, 7458-7463(2010).

    [33] E. Jiménez, K. Abderrafi, J. Martínez-Pastor, R. Abargues, J. Luís Valdés, R. Ibáñez. A novel method of nanocrystal fabrication based on laser ablation in liquid environment. Superlattices Microstruct., 43, 487-493(2008).

    [34] J. R. González-Castillo, E. Rodriguez, E. Jimenez-Villar, D. Rodríguez, I. Salomon-García, G. F. de Sá, T. García-Fernández, D. B. Almeida, C. L. Cesar, R. Johnes, J. C. Ibarra. Synthesis of Ag@Silica nanoparticles by assisted laser ablation. Nanosc. Res. Lett., 10, 399(2015).

    [35] J. R. González-Castillo, E. Rodríguez-González, E. Jiménez-Villar, C. L. Cesar, J. A. Andrade-Arvizu. Assisted laser ablation: silver/gold nanostructures coated with silica. Appl. Nanosci., 7, 597-605(2017).

    [36] G. Fuertes, O. L. Sánchez-Muñoz, E. Pedrueza, K. Abderrafi, J. Salgado, E. Jiménez. Switchable bactericidal effects from novel silica-coated silver nanoparticles mediated by light irradiation. Langmuir, 27, 2826-2833(2011).

    [37] E. Rodríguez, E. Jimenez, L. A. Padilha, A. A. R. Neves, G. J. Jacob, C. L. César, L. C. Barbosa. SiO2/PbTe quantum-dot multilayer production and characterization. Appl. Phys. Lett., 86, 113117(2005).

    [38] G. Kellermann, E. Rodriguez, E. Jimenez, C. L. Cesar, L. C. Barbosa, A. F. Craievich. Structure of PbTe(SiO2)/SiO2 multilayers deposited on Si(111). J. Appl. Crystallogr., 43, 385-393(2010).

    [39] A. D. Mirlin. Spatial structure of anomalously localized states in disordered conductors. J. Math. Phys., 38, 1888-1917(1997).

    [40] A. Mirlin. Statistics of energy levels and eigenfunctions in disordered systems. Phys. Rep., 326, 259-382(2000).

    [41] G. Campagnano, Y. V. Nazarov. GQ corrections in the circuit theory of quantum transport. Phys. Rev. B, 74, 125307(2006).

    [42] A. L. R. Barbosa, D. Bazeia, J. G. G. S. Ramos. Universal Braess paradox in open quantum dots. Phys. Rev. E, 90, 042915(2014).

    [43] E. Jiménez-Villar, I. F. da Silva, V. Mestre, N. U. Wetter, C. Lopez, P. C. de Oliveira, W. M. Faustino, G. F. de Sá. Random lasing at localization transition in a colloidal suspension (TiO2@Silica). ACS Omega, 2, 2415-2421(2017).

    [44] N. U. Wetter, J. M. Giehl, F. Butzbach, D. Anacleto, E. Jiménez-Villar. Polydispersed powders (Nd3+:YVO4) for ultra efficient random lasers. Part. Part. Syst. Charact., 35, 1700335(2017).

    [45] M. B. van der Mark, M. P. van Albada, A. Lagendijk. Light scattering in strongly scattering media: multiple scattering and weak localization. Phys. Rev. B, 37, 3575-3592(1988).

    [46] B. L. Al’tshuler, I. K. Zharekeshev, S. A. Kotochigova, V. I. Shklovskiĭ. Repulsion between energy levels and the metal-insulator transition. Zhurnal Eksp. i Teor. Fiz., 67, 343-355(1988).

    [47] B. Maes, P. Bienstman, R. Baets. Switching in coupled nonlinear photonic-crystal resonators. J. Opt. Soc. Am. B, 22, 1778-1784(2005).

    [48] B. Maes, M. Soljacic, J. D. Joannopoulos, P. Bienstman, R. Baets, S.-P. Gorza, M. Haelterman. Switching through symmetry breaking in coupled nonlinear micro-cavities. Opt. Express, 14, 10678-10683(2006).

    [49] P. Hamel, S. Haddadi, F. Raineri, P. Monnier, G. Beaudoin, I. Sagnes, A. Levenson, A. M. Yacomotti. Spontaneous mirror-symmetry breaking in coupled photonic-crystal nanolasers. Nat. Photonics, 9, 311-315(2015).

    [50] E. Akkermans, P. E. Wolf, R. Maynard. Coherent backscattering of light by disordered media: analysis of the peak line shape. Phys. Rev. Lett., 56, 1471-1474(1986).

    [51] A. Lagendijk, R. Vreeker, P. De Vries. Influence of internal reflection on diffusive transport in strongly scattering media. Phys. Lett. A, 136, 81-88(1989).

    [52] J. X. Zhu, D. J. Pine, D. A. Weitz. Internal reflection of diffusive light in random media. Phys. Rev. A, 44, 3948-3959(1991).

    [53] O. L. Sánchez-Muñoz, J. Salgado, J. Martínez-Pastor, E. Jiménez-Villar. Synthesis and physical stability of novel Au-Ag@SiO2 alloy nanoparticles. Nanosci. Nanotechnol., 2, 1-7(2012).

    [54] E. Jimenez-Villar, V. Mestre, N. U. Wetter, G. F. de Sá. Core-shell (TiO2@Silica) nanoparticles for random lasers. Proc. SPIE, 10549, 105490D(2018).

    [55] M. Büttiker, M. Moskalets. From Anderson localization to mesoscopic physics. Int. J. Mod. Phys. B, 24, 1555-1576(2010).

    [56] S. E. Skipetrov, B. A. Van Tiggelen. Dynamics of Anderson localization in open 3D media. Phys. Rev. Lett., 96, 2-5(2006).

    Ernesto Jimenez-Villar, M. C. S. Xavier, Niklaus U. Wetter, Valdeci Mestre, Weliton S. Martins, Gabriel F. Basso, V. A. Ermakov, F. C. Marques, Gilberto F. de Sá. Anomalous transport of light at the phase transition to localization: strong dependence with incident angle[J]. Photonics Research, 2018, 6(10): 929
    Download Citation