• Laser & Optoelectronics Progress
  • Vol. 55, Issue 8, 80001 (2018)
Li Yu1、2, Liao Meisong1, Xue Tianfeng1, Bei Jiafang3, Hu Lili1, and Zhang Long1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/lop55.080001 Cite this Article Set citation alerts
    Li Yu, Liao Meisong, Xue Tianfeng, Bei Jiafang, Hu Lili, Zhang Long. Research Progress of Mid-Infrared Supercontinuum in Soft Glass Fiber[J]. Laser & Optoelectronics Progress, 2018, 55(8): 80001 Copy Citation Text show less
    References

    [1] Luo Y, Liang X B, Li C, et al. Influence of supercontinuum laser on bioluminescence imaging technology[J]. Laser & Optoelectronics Progress, 2016, 53(12): 121401.

    [2] Michaels C A, Masiello T, Chu P M. Fourier transform spectrometry with a near infrared supercontinuum source[J]. Applied Spectroscopy, 2009, 63(5): 538-543.

    [3] Kumar M, Islam M N, Terry F L, et al. Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source[J]. Applied Optics, 2012, 51(15): 2794-2807.

    [4] Swiderski J. High-power mid-infrared supercontinuum sources: current status and future perspectives[J]. Progress in Quantum Electronics, 2014, 38(5): 189-235.

    [5] Liu K, Liu J, Shi H, et al. High power mid-infrared supercontinuum generation in a single-mode ZBLAN fiber with up to 21.8 W average output power[J]. Optics Express, 2014, 22(20): 24384-24391.

    [6] Swiderski J, Michalska M, Kieleck C, et al. High power supercontinuum generation in fluoride fibers pumped by 2 μm pulses[J]. IEEE Photonics Technology Letters, 2014, 26(2): 150-153.

    [7] Bartula R, Hagen C, Walewski J, et al. Generation of pulsed ultra-violet and mid-infrared super-continua in standard single-mode fiber[J]. IEEE Photonics Technology Letters, 2006, 18: 91-93.

    [8] Chen X, Kumar M, Cheng M, et al. Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power[J]. Optics Express, 2007, 15(3): 865-871.

    [9] Qin G, Yan X, Liao M, et al. Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber[J]. Applied Physics Letters, 2010, 95: 161103.

    [10] Heidt A, Price J, Baskiotis C, et al. Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 μm[J]. Optics Express, 2013, 21(20): 24281-24287.

    [11] Yang W, Zhang B, Xue G, et al. Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 μm MOPA system[J]. Optics Letters, 2014, 39(7): 1849-1852.

    [12] Zheng Z, Zhao J, Liu M, et al. Scaling all-fiber mid-infrared supercontinuum up to 10 W-level based on thermal-spliced silica fiber and ZBLAN fiber[J]. Photonics Research, 2016, 4(4): 135-139.

    [13] Jiang X, Joly N, Finger M, et al. Deep-ultraviolet to mid-infrared supercontinuum generated in solid-core ZBLAN photonic crystal fiber[J]. Nature Photonics, 2015, 9: 133-139.

    [14] Bei J, Foo H, Qian G, et al. Experimental study of chemical durability of fluorozirconate and fluoroindate glasses in deionized water[J]. Optical Materials Express, 2014, 4(6): 1213-1226.

    [15] Théberge F, Daigle J, Vincent D. Mid-infrared supercontinuum generation in fluoroindate fiber[J]. Optics Letters, 2013, 38(22): 4683-4685.

    [16] Salem R, Jiang Z, Liu D, et al. Mid-infrared supercontinuum generation spanning 1.8 octaves using step-index indium fluoride fiber pumped by a femtosecond fiber laser near 2 μm[J]. Optics Express, 2015, 23(24): 30593-30602.

    [17] Gao P F, Li X H, Luo W F, et al. Numerical simulation of effect of pump wavelength on mid-infrared supercontinuum[J]. Chinese Journal of Lasers, 2017, 44(7): 0703023.

    [18] Michalska M, Mikolajczyk J, Wojtas J, et al. Mid-infrared, super-flat, supercontinuum generation covering the 2-5 μm spectral band using a fluoroindate fibre pumped with picosecond pulses[J]. Science Reports, 2016, 6: 39138.

    [19] Thapa R, Rhonehouse D, Nguyen D, et al. Mid-IR supercontinuum generation in ultra-low loss, dispersion-zero shifted tellurite glass fiber with extended coverage beyond 4.5 μm[J]. Proceedings of SPIE, 2013, 8898: 889808.

    [20] Kedenburg S, Steinle T, Mrz F, et al. Solitonic supercontinuum of femtosecond mid-IR pulses in W-type index tellurite fibers with two zero dispersion wavelengths[J]. Applied Physics Letters, 2016, 1(8): 086101.

    [21] Kedenburg S, Strutynski C, Kibler B, et al. High repetition rate mid-infrared supercontinuum generation from 1.3 to 5.3 μm in robust step-index tellurite fibers[J]. Journal of the Optical Society of America B, 2017, 34(3): 601-607.

    [22] Shi H, Feng X, Tan F, et al. Multi-watt mid-infrared supercontinuum generated from a dehydrated large-core tellurite glass fiber[J]. Optics Express, 2016, 6(12): 3967-3076.

    [23] Domachuk P, Wolchove N, Cronin-Golomb M, et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs[J]. Optics Express, 2008, 16(10): 7161-7168.

    [24] Feng X, Loh W, Flanagan J, et al. Single-mode tellurite glass holey fiber with extremely large mode area for infrared nonlinear applications[J]. Optics Express, 2008, 16(18): 13651-13656.

    [25] Liao M, Chaudhari C, Qin G, et al. Tellurite microstructure fibers with small hexagonal core for supercontinuum generation[J]. Optics Express, 2009, 17(14): 12174-12182.

    [26] Qin G, Yan X, Kito C, et al. Highly nonlinear tellurite microstructured fibers for broadband wavelength conversion and flattened supercontinuum generation[J]. Journal of Applied Physics, 2010, 107(4): 043108.

    [27] Savelii I, Mouawad O, Fatome J, et al. Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured sulfide and tellurite optical fibers[J]. Optics Express, 2012, 20(24): 27083-27093.

    [28] Belal M, Xu L, Horak P, et al. Mid-infrared supercontinuum generation in suspended core tellurite micro structured optical fibers[J]. Optics Letters, 2015, 40(10): 2237-2240.

    [29] Klimczak M, Stepniewski G, Bookey H, et al. Broadband infrared supercontinuum generation in hexagonal-lattice tellurite photonic crystal fiber with dispersion optimized for pumping near 1560 nm[J]. Optics Letters, 2013, 38(22): 4679-4682.

    [30] Gattass R, Shaw L, Nguyen V, et al. All-fiber chalcogenide-based mid-infrared supercontinuum source[J]. Optical Fiber Technology, 2012, 18: 345-348.

    [31] Petersen C, Mller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular ngerprint region using ultra-high NA chalcogenide step-index bre[J]. Nature Photonics, 2014, 8: 830-834.

    [32] Zhao Z, Wang X, Dai S, et al. 1.5-14 μm mid-infrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(22): 5222-5225.

    [33] Zhao Z, Wu B, Wang X, et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode ber[J]. Laser & Photonics Reviews, 2017, 11(2): 1700005.

    [34] Mouawad O, Picot-Clémente J, Amrani F, et al. Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers[J]. Optics Letters, 2014, 39(9): 2684-2687.

    [35] Han X, You C, Dai S, et al. Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core ber[J]. Optical Fiber Technology, 2017, 34: 74-79.

    [36] Liu L, Cheng T, Nagasaka K, et al. Coherent mid-infrared supercontinuum generation in all-solid chalcogenide microstructured fibers with all-normal dispersion[J]. Optics Letters, 2016, 41(2): 392-395.

    [37] Jamatia P, Saini T, Kumar A, et al. Design and analysis of a highly nonlinear composite photonic crystal fiber for supercontinuum generation: visible to mid-infrared[J]. Applied Optics, 2016, 55(24): 6775-6781.

    [38] Wu Y. 2-10 μm mid-infrared supercontinuum generation in As2Se3 photonic crystal fiber[J]. Laser Physics Letters, 2013, 10(9): 095107.

    [39] Diouf M, Salem A, Cherif R, et al. High power broadband mid-infrared supercontinuum fiber laser using a novel chalcogenide AsSe2 photonic crystal fiber[J]. Optical Materials, 2016, 55: 10-16.

    [40] Zhang P, Ma B, Zhang J, et al. Simulation study of mid-infrared supercontinuum generation in Ge23Sb12S65-based chalcogenide photonic crystal fiber[J]. Optik, 2016, 127: 2732-2736.

    [41] Yin K, Zhang B, Cai Z, et al. Fiber-pumped 2.0-5.5 μm supercontinuum laser source[J]. Chinese Journal of Lasers, 2016, 43(12): 1215001.

    [42] Yin K, Zhang B, Yang L, et al. 15.2 W spectrally flat all-fiber supercontinuum laser source with >1 W power beyond 3.8 μm[J]. Optics Letters, 2017, 42(12): 2334-2337.

    [43] Yang W, Zhang B, Yin K, et al. High power all fiber mid-IR supercontinuum generation in a ZBLAN fiber pumped by a 2 μm MOPA system[J]. Optics Express, 2013, 21(17): 19732-19742.

    [44] Swiderski J, Michalska M. High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared[J]. Optics Letters, 2014, 39(4): 910-913.

    [45] Yin K, Zhang B, Yao J, et al. Highly stable, monolithic, single-mode mid-infrared supercontinuum source based on low-loss fusion spliced silica and fluoride fibers[J]. Optics Letters, 2016, 41(5): 946-949.

    [46] Swiderski J, Michalska M, Maze G. Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system[J]. Optics Express, 2013, 21(7): 7851-7857.

    [47] Gauthier J, Fortin V, Carrée J, et al. Mid-IR supercontinuum from 2.4 to 5.4 μm in a low-loss fluoroindate fiber[J]. Optics Letters, 2016, 41(8): 1756-1759.

    [48] Yao J, Zhang B, Yin K, et al. Mid-infrared supercontinuum generation in step-index As2S3 fibers pumped by a nanosecond shortwave-infrared supercontinuum pump source[J]. Optics Express, 2016, 24(13): 15093-15100.

    [49] Luo B, Wang Y, Dai S, et al. Mid-infrared supercontinuum generation in As2Se3-As2S3 chalcogenide glass fiber with high NA[J]. Journal of Lightwave Technology, 2017, 35(12): 2464-2469.

    [50] Zhang P, Yang P, Wang X, et al. Broadband mid-infrared supercontinuum generation in 1-meter-long As2S3-based fiber with ultra-large core diameter[J]. Optics Express, 2016, 24(25): 28400-28408.

    [51] Robichaud L, Fortin V, Gauthier J, et al. Compact 3-8 μm supercontinuum generation in a low-loss As2Se3 step-index fiber[J]. Optics Letters, 2016, 41(20): 4605-4608.

    [52] Zhang B, Yu L, Zhai C, et al. High brightness 2.2-12 μm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber[J]. Journal of the American Ceramic Society, 2016, 99(8): 2565-2568.

    [53] Cheng T, Nagasaka K, Tuan T, et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 2016, 41(9): 2117-2120.

    [54] Gao W, Amraoui M, Liao M, et al. Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber[J]. Optics Express, 2013, 21(8): 9573-9583.

    [55] Mller U, Yu Y, Kubat I, et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber[J]. Optics Express, 2015, 23(3): 3282-3291.

    Li Yu, Liao Meisong, Xue Tianfeng, Bei Jiafang, Hu Lili, Zhang Long. Research Progress of Mid-Infrared Supercontinuum in Soft Glass Fiber[J]. Laser & Optoelectronics Progress, 2018, 55(8): 80001
    Download Citation