• Photonics Research
  • Vol. 10, Issue 12, 2876 (2022)
Xufeng Jing1、2、*, Guihong Qin1、2, and Peng Zhang1
Author Affiliations
  • 1Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
  • 2Centre for THz Research, China Jiliang University, Hangzhou 310018, China
  • show less
    DOI: 10.1364/PRJ.476100 Cite this Article Set citation alerts
    Xufeng Jing, Guihong Qin, Peng Zhang. Broadband silicon-based tunable metamaterial microfluidic sensor[J]. Photonics Research, 2022, 10(12): 2876 Copy Citation Text show less
    References

    [1] N. Kaina, F. Lemoult, M. Fink, G. Lerosey. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Nature, 525, 77-81(2015).

    [2] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966-3969(2000).

    [3] X. He. Tunable terahertz graphene metamaterials. Carbon, 82, 229-237(2015).

    [4] X. He, X. Zhong, F. Lin, W. Shi. Investigation of graphene assisted tunable terahertz metamaterials absorber. Opt. Mater. Express, 6, 331-342(2016).

    [5] X. He, F. Liu, F. Lin, W. Shi. Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides. Opt. Lett., 46, 472-475(2021).

    [6] X. Jing, S. Jin, Y. Tian, P. Liang, Q. Dong, L. Wang. Analysis of the sinusoidal nanopatterning grating structure. Opt. Laser Technol., 48, 160-166(2013).

    [7] X. Jing, Y. Xu, H. Gan, Y. He, Z. Hong. High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region. IEEE Access, 7, 144945-144956(2019).

    [8] L. Jiang, B. Fang, Z. Yan, J. Fan, C. Qi, J. Liu, Y. He, C. Li, X. Jing, H. Gan, Z. Hong. Terahertz high and near-zero refractive index metamaterials by double layer metal ring microstructure. Opt. Laser Technol., 123, 105949(2020).

    [9] H. Lv, X. Lu, Y. Han, Z. Mou, S. Teng. Multifocal metalens with a controllable intensity ratio. Opt. Lett., 44, 2518-2521(2019).

    [10] H. Wang, L. Liu, C. Zhou, J. Xu, M. Zhang, S. Teng, Y. Cai. Vortex beam generation with variable topological charge based on a spiral slit. Nanophotonics, 8, 317-324(2019).

    [11] S. A. Ramakrishna, J. B. Pendry. Refining the perfect lens: layered media and optical gain. 32nd European Microwave Conference, 315-318(2002).

    [12] D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, D. R. Smith. Broadband electromagnetic cloaking with smart metamaterials. Nat. Commun., 3, 1213(2012).

    [13] R. Schittny, M. Kadic, T. Bückmann, M. Wegener. Invisibility cloaking in a diffusive light scattering medium. Science, 345, 427-429(2014).

    [14] T. Chen, S. Li, H. Sun. Metamaterials application in sensing. Sensors, 12, 2742-2765(2012).

    [15] Y. Lee, S.-J. Kim, H. Park, B. Lee. Metamaterials and metasurfaces for sensor applications. Sensors, 17, 1726(2017).

    [16] M. R. Akram, G. Ding, K. Chen, Y. Feng, W. Zhu. Ultra-thin single layer metasurfaces with ultra-wideband operation for both transmission and reflection. Adv. Mater., 32, 1907308(2020).

    [17] J. Zhang, X. Wei, I. D. Rukhlenko, H.-T. Chen, W. Zhu. Electrically tunable metasurface with independent frequency and amplitude modulations. ACS Photon., 7, 265-271(2020).

    [18] B. Fang, Z. Cai, Y. Peng, C. Li, Z. Hong, X. Jing. Realization of ultrahigh refractive index in terahertz region by multiple layers coupled metal ring metamaterials. J. Electromagn. Wave, 33, 1375-1390(2019).

    [19] B. Fang, B. Li, Y. Peng, C. Li, Z. Hong, X. Jing. Polarization independent multiband metamaterials absorber by fundamental cavity mode of multilayer microstructure. Microw. Opt. Technol. Lett., 61, 2385-2391(2019).

    [20] W. Wang, X. Jing, J. Zhao, Y. Li, Y. Tian. Improvement of accuracy of simple methods for design and analysis of a blazed phase grating microstructure. Opt. Appl., 48, 183-198(2017).

    [21] L. Jiang, B. Fang, Z. Yan. Improvement of unidirectional scattering characteristics based on multiple nanospheres array. Micro. Opt. Technol. Lett., 62, 2405-2414(2020).

    [22] J. Zhang, H. Zhang, W. Yang, K. Chen, X. Wei, Y. Feng, R. Jin, W. Zhu. Dynamic scattering steering with graphene-based coding meta-mirror. Adv. Opt. Mater., 8, 2000683(2020).

    [23] X. Bai, F. Kong, Y. Sun, F. Wang, J. Qian, X. Li, A. Cao, C. He, X. Liang, R. Jin, W. Zhu. High-efficiency transmissive programable metasurface for multi-mode OAM generations. Adv. Opt. Mater., 8, 2000570(2020).

    [24] X. Jing, X. Gui, P. Zhou, Z. Hong. Physical explanation of Fabry-Pérot cavity for broadband bilayer metamaterials polarization converter. J. Lightwave Technol., 36, 2322-2327(2018).

    [25] R. Xia, X. Jing, X. Gui, Y. Tian. Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials. Opt. Mater. Express, 7, 977-988(2017).

    [26] J. Zhao, X. Jing, W. Wang, Y. Tian, D. Zhu, G. Shi. Steady method to retrieve effective electromagnetic parameters of bianisotropic metamaterials at one incident direction in the terahertz region. Opt. Laser Technol., 95, 56-62(2017).

    [27] Y. Tian, X. Jing, H. Gan, X. Li, Z. Hong. Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces. Front. Phys., 15, 62502(2020).

    [28] C. Zhou, Z. Mou, R. Bao, Z. Li, S. Teng. Compound plasmonic vortex generation based on spiral nanoslits. Front. Phys., 16, 33503(2021).

    [29] G. Dai. Designing nonlinear thermal devices and metamaterials under the Fourier law: a route to nonlinear thermotics. Front. Phys., 16, 53301(2021).

    [30] L. Lan, Y. Gao, X. Fan, M. Li, Q. Hao, T. Qiu. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys., 16, 43300(2021).

    [31] X. Lu, X. Zeng, H. Lv, Y. Han, Z. Mou, C. Liu, S. Wang, S. Teng. Polarization controllable plasmonic focusing based on nanometer holes. Nanotechnology, 31, 135201(2020).

    [32] H. Lv, X. Lu, Y. Han, Z. Mou, C. Zhou, S. Wang, S. Teng. Metasurface cylindrical vector light generators based on nanometer holes. New J. Phys., 21, 123047(2019).

    [33] B. Fang, D. Feng, P. Chen. Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region. Front. Phys., 17, 53502(2022).

    [34] J. Leng, J. Peng, A. Jin, D. Cao, D. Liu, X. He, F. Lin, F. Liu. Investigation of terahertz high Q-factor of all-dielectric metamaterials. Opt. Laser Technol., 146, 107570(2022).

    [35] X. He, F. Liu, F. Lin, W. Shi. 3D Dirac semimetal supported tunable TE modes. Ann. Phys., 534, 2100355(2022).

    [36] L. Zhu, Y. Cao, Q. Chen, X. Ouyang, Y. Xu, Z. Hu, J. Qiu, X. Li. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods. Opto-Electron. Adv., 4, 210002(2021).

    [37] T. Zhao, X. Jing, X. Tang, X. Bie, T. Luo, H. Gan, Y. He, C. Li, Z. Hong. Manipulation of wave scattering by Fourier convolution operations with Pancharatnam-Berry coding metasurface. Opt. Laser Eng., 141, 106556(2021).

    [38] H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt. Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization. Phys. Rev. B, 78, 241103(2008).

    [39] Y. Shang, Z. Shen, S. Xiao. On the design of single-layer circuit analog absorber using double-square-loop array. IEEE Trans. Antennas Propag., 61, 6022-6029(2013).

    [40] F. Costa, A. Monorchio. A frequency selective radome with wideband absorbing properties. IEEE Trans. Antennas Propag., 60, 2740-2747(2012).

    [41] J. Sun, L. Liu, G. Dong, J. Zhou. An extremely broad band metamaterial absorber based on destructive interference. Opt. Express, 19, 21155-21162(2011).

    [42] H. Xiong, J.-S. Hong, C.-M. Luo, L.-L. Zhong. An ultrathin and broadband metamaterial absorber using multi-layer structures. J. Appl. Phys., 114, 064109(2013).

    [43] M. Pu, M. Wang, C. Hu, C. Huang, Z. Zhao, Y. Wang, X. Luo. Engineering heavily doped silicon for broadband absorber in the terahertz regime. Opt. Express, 20, 25513-25519(2012).

    [44] J. Yuan, J. Luo, M. Zhang, M. Pu, X. Li, Z. Zhao, X. Luo. An ultrabroadband THz absorber based on structured doped silicon with antireflection techniques. IEEE Photon. J., 10, 5901010(2018).

    [45] N. Nguyen-Huu, M. Cada, J. Pištora. Investigation of optical absorptance of one-dimensionally periodic silicon gratings as solar absorbers for solar cells. Opt. Express., 22, A68-A79(2014).

    [46] Z. Xu, D. Wu, Y. Liu, C. Liu, Z. Yu, L. Yu, H. Ye. Design of a tunable ultra-broadband terahertz absorber based on multiple layers of graphene ribbons. Nanoscale Res. Lett., 13, 1(2018).

    [47] L. Wang, S. Ge, W. Hu, M. Nakajima, Y. Lu. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber. Opt. Express., 25, 23873-23879(2017).

    [48] Z. Song, K. Wang, J. Li, Q. H. Liu. Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. Opt. Express, 26, 7148-7154(2018).

    [49] L. Qi, C. Liu, X. Zhang, D. Sun, S. M. A. Shah. Structure-insensitive switchable terahertz broadband metamaterial absorbers. Appl. Phys. Express., 12, 062011(2019).

    [50] H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, G. D. Metcalfe, M. Wraback, X. Zhang, R. D. Averitt. Optically modulated multiband terahertz perfect absorber. Adv. Opt. Mater., 2, 1221-1226(2014).

    [51] Y. Cheng, J. Liu, F. Chen, H. Luo, X. Li. Optically switchable broadband metasurface absorber based on square ring shaped photoconductive silicon for terahertz waves. Phys. Lett. A, 402, 127345(2021).

    [52] L. Yue, Y. Wang, Z. Cui, X. Zhang, Y. Zhu, C. Yang, X. Wang, S. Chen. Highly sensitive detection of optical tunable terahertz multi-band absorber based on all-dielectric grating. 45th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 1-2(2020).

    [53] L. Yue, Y. Wang, Z. Cui, X. Zhang, Y. Zhu, X. Zhang, S. Chen, X. Wang, K. Zhang. Multi-band terahertz resonant absorption based on an all-dielectric grating metasurface for chlorpyrifos sensing. Opt. Express, 29, 13563-13575(2021).

    [54] Q. Guo, H. Zhu, F. Liu, A. Y. Zhu, J. C. Reed, F. Yi, E. Cubukcu. Silicon-on-glass graphene-functionalized leaky cavity mode nanophotonic biosensor. ACS Photon., 1, 221-227(2014).

    [55] P. Nie, D. Zhu, Z. Cui, F. Qu, L. Lin, Y. Wang. Sensitive detection of chlorpyrifos pesticide using an all-dielectric broadband terahertz metamaterial absorber. Sens. Actuators B Chem., 307, 127642(2020).

    [56] Y. Hua, H. Zhang. Qualitative and quantitative detection of pesticides with terahertz time-domain spectroscopy. IEEE Trans. Microw. Theory Tech., 58, 2064-2070(2010).

    [57] X. Yang, X. Zhao, K. Yang, Y. Liu, Y. Liu, W. Fu, Y. Luo. Biomedical applications of terahertz spectroscopy and imaging. Trends Biotechnol., 34, 810-824(2016).

    [58] S. Yin, W. Huang, L. Guo. Terahertz metamaterial sensor integrated with microfluidic channel. Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-2(2019).

    [59] S. J. Park, S. A. N. Yoon, Y. H. Ahn. Dielectric constant measurements of thin films and liquids using terahertz metamaterials. RSC Adv., 6, 69381-69386(2016).

    [60] Z. Geng, X. Zhang, Z. Fan, X. Lv, H. Chen. A route to terahertz metamaterial biosensor integrated with microfluidics for liver cancer biomarker testing in early stage. Sci. Rep., 7, 16378(2017).

    [61] S. P. Mickan, A. Menikh, H. Liu, C. A. Mannella, R. MacColl, D. Abbott, J. Munch, X. C. Zhang. Label-free bioaffinity detection using terahertz technology. Phys. Med. Biol., 47, 3789(2002).

    [62] N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater., 8, 758-762(2009).

    [63] X. You, A. Upadhyay, Y. Cheng, M. Bhaskaran, S. Sriram, C. Fumeaux, W. Withayachumnankul. Ultra-wideband far-infrared absorber based on anisotropically etched doped silicon. Opt. Lett., 45, 1196-1199(2020).

    [64] O. Muscato, V. Di Stefano. Local equilibrium and off-equilibrium thermoelectric effects in silicon semiconductors. J. Appl. Phys., 110, 093706(2011).

    [65] M.-J. Sher, E. Mazur. Intermediate band conduction in femtosecond-laser hyperdoped silicon. Appl. Phys. Lett., 105, 032103(2014).

    [66] L. A. Woldering, L. Abelmann, M. C. Elwenspoek. Predicted photonic band gaps in diamond-lattice crystals built from silicon truncated tetrahedrons. J. Appl. Phys., 110, 043107(2011).

    [67] K. Fan, J. Zhang, X. Liu, G.-F. Zhang, R. D. Averitt, W. J. Padilla. Phototunable dielectric Huygens’ metasurfaces. Adv. Mater., 30, 1800278(2018).

    [68] A. J. Sabbah, D. M. Riffe. Femtosecond pump-probe reflectivity study of silicon carrier dynamics. Phys. Rev. B, 66, 165217(2002).

    [69] X. Zhao, Y. Wang, J. Schalch, G. Duan, K. Cremin, J. Zhang, C. Chen, R. D. Averitt, X. Zhang. Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers. ACS Photon., 6, 830-837(2019).

    [70] P. Pal, K. Sato, M. A. Gosalvez, M. Shikida. Study of rounded concave and sharp edge convex corners undercutting in CMOS compatible anisotropic etchants. J. Micromechan. Microeng., 17, 2299(2007).

    [71] V. Jovic, J. Lamovec, M. Popovic. Investigation of silicon anisotropic etching in alkaline solutions with propanol addition. 26th International Conference on Microelectronics, 355-358(2008).

    [72] T. P. Kuehn, S. M. Ali, S. C. Mantell, E. K. Longmire. Reliability, Packaging, Testing, and Characterization of MEMS/MOEMS VI, 196(2007).

    [73] N. Marenco, W. Reinert, S. Warnat, P. Lange, S. Gruenzig, G. Allegato, G. Hillmann, H. Kostner, W. Gal, S. Guadagnuolo, A. Conte, K. Malecki, K. Friedel. Investigation of key technologies for system-in-package Integration of inertial MEMS. Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS, 35-40(2009).

    [74] B. Puers, W. Sansen. Compensation structures for convex corner micromachining in silicon. Sens. Actuators A Phys., 23, 1036-1041(1990).

    [75] R. Divan, N. Moldovan, H. Camon. Roughning and smoothing dynamics during KOH silicon etching. Sens. Actuators A Phys., 74, 18-23(1999).

    [76] Z. Y. Niu, X. Z. Wu, P. T. Dong, D. B. Xiao, Z. Q. Hou, Z. H. Chen, X. Zhang. Design and empirical study for coner compensation in 25% wt TMAH etching on (100) silicon wafers. Key Eng. Mater., 483, 9-13(2011).

    [77] M. Jiang, Z. Song, Q. H. Liu. Ultra-broadband wide-angle terahertz absorber realized by a doped silicon metamaterial. Opt. Commun., 471, 125835(2020).

    [78] Y. Wang, D. Zhu, Z. Cui, L. Hou, L. Lin, F. Qu, X. Liu, P. Nie. All-dielectric terahertz plasmonic metamaterial absorbers and high-sensitivity sensing. ACS Omega., 4, 18645-18652(2019).

    [79] S. Yin, J. Zhu, W. Xu, W. Jiang, J. Yuan, G. Yin, L. Xie, Y. Ying, Y. Ma. High-performance terahertz wave absorbers made of silicon-based metamaterials. Appl. Phys. Lett., 107, 073903(2015).

    [80] H. Zhao, S. Liu, Y. Wei, Y. Yue, M. Gao, X. Zeng, X. Deng, N. Kotov, L. Guo, L. Jiang. Multiscale engineered artificial tooth enamel. Science, 375, 551-556(2022).

    [81] Y. Yue, Y. Gao, W. Hu, B. Xu, J. Wang, X. Zhang, Q. Zhang, Y. Wang, B. Ge, Z. Yang, Z. Li, P. Ying, X. Liu, D. Yu, B. Wei, Z. Wang, X. Zhou, L. Guo, Y. Tian. Hierarchically structured diamond composite with exceptional toughness. Nature, 582, 370-374(2020).

    [82] J. Kang, X. Qiu, Q. Hu, J. Zhong, X. Gao, R. Huang, C. Wan, L. Liu, X. Duan, L. Guo. Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat. Catal., 4, 1050-1058(2021).

    [83] K. Chen, X. Tang, B. Jia, C. Chao, Y. Wei, J. Hou, L. Dong, X. Deng, T. Xiao, K. Goda, L. Guo. Graphene oxide bulk material reinforced by heterophase platelets with multiscale interface crosslinking. Nat. Mater., 21, 1121-1129(2022).

    [84] J. Kang, Y. Xue, J. Yang, Q. Hu, Q. Zhang, L. Gu, A. Selloni, L. Liu, L. Guo. Realizing two-electron transfer in Ni(OH)2 nanosheets for energy storage. J. Am. Chem. Soc., 144, 8969-8976(2022).

    [85] J. Nai, Y. Tian, X. Guan, L. Guo. Pearson’s principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc., 135, 16082-16091(2013).

    [86] H. Zhao, Y. Zhu, F. Li, R. Hao, S. Wang, L. Guo. A generalized strategy for the synthesis of large-size ultrathin two-dimensional metal oxide nanosheets. Angew. Chem. Int. Ed., 56, 8766-8770(2017).

    [87] Z. Cai, L. Li, Y. Zhang, Z. Yang, J. Yang, Y. Guo, L. Guo. Amorphous nanocages of Cu-Ni-Fe hydr(oxy)oxide prepared by photocorrosion for highly efficient oxygen evolution. Angew. Chem. Int. Ed., 58, 4189-4194(2019).

    Xufeng Jing, Guihong Qin, Peng Zhang. Broadband silicon-based tunable metamaterial microfluidic sensor[J]. Photonics Research, 2022, 10(12): 2876
    Download Citation