• Laser & Optoelectronics Progress
  • Vol. 56, Issue 11, 110006 (2019)
Zengyong Liu, Hongqian Cao, Fei Xu*, and Yanqing Lu
Author Affiliations
  • College of Engineering and Applied Science, Nanjing University, Nanjing, Jiangsu 210093, China
  • show less
    DOI: 10.3788/LOP56.110006 Cite this Article Set citation alerts
    Zengyong Liu, Hongqian Cao, Fei Xu, Yanqing Lu. Graphene Nanoelectromechanical System and Its Integration with Optical Fiber[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110006 Copy Citation Text show less
    References

    [1] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

         Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [2] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

         Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [3] Frank I W. Tanenbaum D M, van der Zande A M, et al. Mechanical properties of suspended graphene sheets[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25, 2558-2561(2007).

         Frank I W. Tanenbaum D M, van der Zande A M, et al. Mechanical properties of suspended graphene sheets[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25, 2558-2561(2007).

    [4] Novoselov K S, Geim A K, Morozov S V et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 438, 197-200(2005). http://www.tandfonline.com/servlet/linkout?suffix=CIT0012&dbid=8&doi=10.1080%2F21663831.2013.824516&key=16281030

         Novoselov K S, Geim A K, Morozov S V et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 438, 197-200(2005). http://www.tandfonline.com/servlet/linkout?suffix=CIT0012&dbid=8&doi=10.1080%2F21663831.2013.824516&key=16281030

    [5] Singh V, Shevchuk O, Blanter Y M et al. Negative nonlinear damping of a multilayer graphene mechanical resonator[J]. Physical Review B, 93, 245407(2016). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.245407

         Singh V, Shevchuk O, Blanter Y M et al. Negative nonlinear damping of a multilayer graphene mechanical resonator[J]. Physical Review B, 93, 245407(2016). http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.245407

    [6] Chen C Y, Deshpande V V, Koshino M et al. Modulation of mechanical resonance by chemical potential oscillation in graphene[J]. Nature Physics, 12, 240-244(2016). http://www.nature.com/articles/nphys3576

         Chen C Y, Deshpande V V, Koshino M et al. Modulation of mechanical resonance by chemical potential oscillation in graphene[J]. Nature Physics, 12, 240-244(2016). http://www.nature.com/articles/nphys3576

    [7] Ghahari F, Walkup D, Gutiérrez C et al. An on/off Berry phase switch in circular graphene resonators[J]. Science, 356, 845-849(2017). http://www.ncbi.nlm.nih.gov/pubmed/28546211

         Ghahari F, Walkup D, Gutiérrez C et al. An on/off Berry phase switch in circular graphene resonators[J]. Science, 356, 845-849(2017). http://www.ncbi.nlm.nih.gov/pubmed/28546211

    [8] Chen C Y, Rosenblatt S, Bolotin K I et al. Performance of monolayer graphene nanomechanical resonators with electrical readout[J]. Nature Nanotechnology, 4, 861-867(2009). http://www.nature.com/nnano/journal/v4/n12/abs/nnano.2009.267.html

         Chen C Y, Rosenblatt S, Bolotin K I et al. Performance of monolayer graphene nanomechanical resonators with electrical readout[J]. Nature Nanotechnology, 4, 861-867(2009). http://www.nature.com/nnano/journal/v4/n12/abs/nnano.2009.267.html

    [9] Denisov A, Soto M A, Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration[J]. Light: Science & Applications, 5, e16074(2016). http://www.nature.com/lsa/journal/v5/n5/abs/lsa201674a.html

         Denisov A, Soto M A, Thévenaz L. Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration[J]. Light: Science & Applications, 5, e16074(2016). http://www.nature.com/lsa/journal/v5/n5/abs/lsa201674a.html

    [10] Barrias A, Casas J, Villalba S. A review of distributed optical fiber sensors for civil engineering applications[J]. Sensors, 16, 748(2016). http://europepmc.org/articles/PMC4883438/

         Barrias A, Casas J, Villalba S. A review of distributed optical fiber sensors for civil engineering applications[J]. Sensors, 16, 748(2016). http://europepmc.org/articles/PMC4883438/

    [11] Ramakrishnan M, Rajan G, Semenova Y et al. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials[J]. Sensors, 16, 99(2016). http://europepmc.org/articles/PMC4732132

         Ramakrishnan M, Rajan G, Semenova Y et al. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials[J]. Sensors, 16, 99(2016). http://europepmc.org/articles/PMC4732132

    [12] Ma J, Jin W, Xuan H F et al. Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film[J]. Optics Letters, 39, 4769-4772(2014). http://www.opticsinfobase.org/ol/upcoming_pdf.cfm?id=212620

         Ma J, Jin W, Xuan H F et al. Fiber-optic ferrule-top nanomechanical resonator with multilayer graphene film[J]. Optics Letters, 39, 4769-4772(2014). http://www.opticsinfobase.org/ol/upcoming_pdf.cfm?id=212620

    [13] Robinson J T, Zalalutdinov M, Baldwin J W et al. Wafer-scale reduced graphene oxide films for nanomechanical devices[J]. Nano Letters, 8, 3441-3445(2008). http://www.ncbi.nlm.nih.gov/pubmed/18781807

         Robinson J T, Zalalutdinov M, Baldwin J W et al. Wafer-scale reduced graphene oxide films for nanomechanical devices[J]. Nano Letters, 8, 3441-3445(2008). http://www.ncbi.nlm.nih.gov/pubmed/18781807

    [14] Shivaraman S, Barton R A, Yu X et al. Free-standing epitaxial graphene[J]. Nano Letters, 9, 3100-3105(2009).

         Shivaraman S, Barton R A, Yu X et al. Free-standing epitaxial graphene[J]. Nano Letters, 9, 3100-3105(2009).

    [15] Song X F, Oksanen M, Sillanpää M A et al. Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout[J]. Nano Letters, 12, 198-202(2012). http://www.ncbi.nlm.nih.gov/pubmed/22141577

         Song X F, Oksanen M, Sillanpää M A et al. Stamp transferred suspended graphene mechanical resonators for radio frequency electrical readout[J]. Nano Letters, 12, 198-202(2012). http://www.ncbi.nlm.nih.gov/pubmed/22141577

    [16] Blaikie A, Miller D, room-temperature graphene nanomechanical bolometer[EB/OL]. -10-31)[2018-12-25]. https:∥arxiv., org/abs/1810, 13422(2018).

         Blaikie A, Miller D, room-temperature graphene nanomechanical bolometer[EB/OL]. -10-31)[2018-12-25]. https:∥arxiv., org/abs/1810, 13422(2018).

    [17] Garcia-Sanchez D, Paulo A S et al. . Imaging mechanical vibrations in suspended graphene sheets[J]. Nano Letters, 8, 1399-1403(2008). http://pubs.acs.org/doi/abs/10.1021/nl080201h

         Garcia-Sanchez D, Paulo A S et al. . Imaging mechanical vibrations in suspended graphene sheets[J]. Nano Letters, 8, 1399-1403(2008). http://pubs.acs.org/doi/abs/10.1021/nl080201h

    [18] Bunch J S, Verbridge S S et al. . Electromechanical resonators from graphene sheets[J]. Science, 315, 490-493(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000015000005000057000001&idtype=cvips&gifs=Yes

         Bunch J S, Verbridge S S et al. . Electromechanical resonators from graphene sheets[J]. Science, 315, 490-493(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT01000015000005000057000001&idtype=cvips&gifs=Yes

    [19] Barton R A. Ilic B, van der Zande A M, et al. High, size-dependent quality factor in an array of graphene mechanical resonators[J]. Nano Letters, 11, 1232-1236(2011).

         Barton R A. Ilic B, van der Zande A M, et al. High, size-dependent quality factor in an array of graphene mechanical resonators[J]. Nano Letters, 11, 1232-1236(2011).

    [20] Barton R A, Alden J S et al. . Large-scale arrays of single-layer graphene resonators[J]. Nano Letters, 10, 4869-4873(2010). http://europepmc.org/abstract/MED/21080681

         Barton R A, Alden J S et al. . Large-scale arrays of single-layer graphene resonators[J]. Nano Letters, 10, 4869-4873(2010). http://europepmc.org/abstract/MED/21080681

    [21] Liu Z Y, Yan S C, Lu Z D et al. A fiber-optic magnetometer based on graphene NEMS using superparamagnetic nanoparticles. [C]∥CLEO Pacific Rim Conference, July 29-August 3, 2018, Hong Kong, China. Washington D. C.: OSA, W3A, 76(2018).

         Liu Z Y, Yan S C, Lu Z D et al. A fiber-optic magnetometer based on graphene NEMS using superparamagnetic nanoparticles. [C]∥CLEO Pacific Rim Conference, July 29-August 3, 2018, Hong Kong, China. Washington D. C.: OSA, W3A, 76(2018).

    [22] Bunch J S, Verbridge S S, Alden J S et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 8, 2458-2462(2008). http://europepmc.org/abstract/MED/18630972

         Bunch J S, Verbridge S S, Alden J S et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 8, 2458-2462(2008). http://europepmc.org/abstract/MED/18630972

    [23] Li X, Cai W, An J et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 324, 1312-1314(2009). http://www.europepmc.org/abstract/MED/19423775

         Li X, Cai W, An J et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 324, 1312-1314(2009). http://www.europepmc.org/abstract/MED/19423775

    [24] Kim K S, Zhao Y, Jang H et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 457, 706-710(2009). http://www.nature.com/nature/journal/v457/n7230/abs/nature07719.html

         Kim K S, Zhao Y, Jang H et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 457, 706-710(2009). http://www.nature.com/nature/journal/v457/n7230/abs/nature07719.html

    [25] Reserbat-Plantey A, Schädler K G, Gaudreau L et al. Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS[J]. Nature Communications, 7, 10218(2016). http://links.ealert.nature.com/ctt?kn=153&ms=NTA0NTA0NDES1&r=ODkwMTM2NjQyNgS2&b=0&j=ODQxNjkxMjczS0&mt=1&rt=0

         Reserbat-Plantey A, Schädler K G, Gaudreau L et al. Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS[J]. Nature Communications, 7, 10218(2016). http://links.ealert.nature.com/ctt?kn=153&ms=NTA0NTA0NDES1&r=ODkwMTM2NjQyNgS2&b=0&j=ODQxNjkxMjczS0&mt=1&rt=0

    [26] Luo G, Zhang Z Z, Deng G W et al. Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity[J]. Nature Communications, 9, 383(2018). http://pubmedcentralcanada.ca/pmcc/articles/PMC5786116/

         Luo G, Zhang Z Z, Deng G W et al. Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity[J]. Nature Communications, 9, 383(2018). http://pubmedcentralcanada.ca/pmcc/articles/PMC5786116/

    [27] Christopoulos T, Tsilipakos O, Grivas N et al. Modeling nonlinear resonators comprising graphene: a coupled mode theory approach. [C]∥Conference on Lasers and Electro-Optics, May 14-19, 2017, San Jose, California United States. Washington D. C.: OSA, FTu3H, 3(2017).

         Christopoulos T, Tsilipakos O, Grivas N et al. Modeling nonlinear resonators comprising graphene: a coupled mode theory approach. [C]∥Conference on Lasers and Electro-Optics, May 14-19, 2017, San Jose, California United States. Washington D. C.: OSA, FTu3H, 3(2017).

    [28] Chang W J, Lee H L. Mass detection using a double-layer circular graphene-based nanomechanical resonator[J]. Journal of Applied Physics, 116, 034303(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6857964

         Chang W J, Lee H L. Mass detection using a double-layer circular graphene-based nanomechanical resonator[J]. Journal of Applied Physics, 116, 034303(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6857964

    [29] Verbiest G J, Kirchhof J N, Sonntag J et al. Detecting ultrasound vibrations with graphene resonators[J]. Nano Letters, 18, 5132-5137(2018). http://pubs.acs.org/doi/10.1021/acs.nanolett.8b02036

         Verbiest G J, Kirchhof J N, Sonntag J et al. Detecting ultrasound vibrations with graphene resonators[J]. Nano Letters, 18, 5132-5137(2018). http://pubs.acs.org/doi/10.1021/acs.nanolett.8b02036

    [30] Jiang S W, Gong X H, Guo X et al. Potential application of graphene nanomechanical resonator as pressure sensor[J]. Solid State Communications, 193, 30-33(2014). http://www.sciencedirect.com/science/article/pii/S0038109814002270

         Jiang S W, Gong X H, Guo X et al. Potential application of graphene nanomechanical resonator as pressure sensor[J]. Solid State Communications, 193, 30-33(2014). http://www.sciencedirect.com/science/article/pii/S0038109814002270

    [31] Singh V, Sengupta S, Solanki H S et al. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators[J]. Nanotechnology, 21, 165204(2010). http://europepmc.org/abstract/MED/20351404

         Singh V, Sengupta S, Solanki H S et al. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators[J]. Nanotechnology, 21, 165204(2010). http://europepmc.org/abstract/MED/20351404

    [32] Wang W H, Xiong Z Y, Shi W Q et al. Fiber-optic surface plasmon resonance sensing technology[J]. Laser & Optoelectronics Progress, 54, 090008(2017).

         Wang W H, Xiong Z Y, Shi W Q et al. Fiber-optic surface plasmon resonance sensing technology[J]. Laser & Optoelectronics Progress, 54, 090008(2017).

    [33] Li C, Lu X Q, Yu C B et al. Fiber-optic acoustic sensor based on multi-layered graphene material[J]. Acta Optica Sinica, 38, 0328017(2018).

         Li C, Lu X Q, Yu C B et al. Fiber-optic acoustic sensor based on multi-layered graphene material[J]. Acta Optica Sinica, 38, 0328017(2018).

    [34] Wu Y H, Zhu S, Xu W et al. Progress in distributed optical fiber crack sensing engineering[J]. Laser & Optoelectronics Progress, 55, 090002(2018).

         Wu Y H, Zhu S, Xu W et al. Progress in distributed optical fiber crack sensing engineering[J]. Laser & Optoelectronics Progress, 55, 090002(2018).

    [35] Tan Y Z, Zhang C Z, Jin W et al. Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 199-209(2017). http://ieeexplore.ieee.org/document/7562519/

         Tan Y Z, Zhang C Z, Jin W et al. Optical fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 199-209(2017). http://ieeexplore.ieee.org/document/7562519/

    [36] Liu Z Y, Xu F. Miniature sensor based on fiber-graphene-integrated NEMS. [C]∥2017 16th International Conference on Optical Communications and Networks (ICOCN), August 7-10, 2017, Wuzhen, China. New York: IEEE, 17466235(2017).

         Liu Z Y, Xu F. Miniature sensor based on fiber-graphene-integrated NEMS. [C]∥2017 16th International Conference on Optical Communications and Networks (ICOCN), August 7-10, 2017, Wuzhen, China. New York: IEEE, 17466235(2017).

    Zengyong Liu, Hongqian Cao, Fei Xu, Yanqing Lu. Graphene Nanoelectromechanical System and Its Integration with Optical Fiber[J]. Laser & Optoelectronics Progress, 2019, 56(11): 110006
    Download Citation