• Chinese Journal of Lasers
  • Vol. 50, Issue 1, 0113004 (2023)
Zhiqiang Guan1、2、3、4、*, Wei Dai2, Xiuping Chen2, and Hongxing Xu2、3、4
Author Affiliations
  • 1Hubei Yangtze Memory Laboratories, Wuhan 430205, Hubei , China
  • 2School of Physics and Technology, Wuhan University, Wuhan 430072, Hubei , China
  • 3School of Microelectronics, Wuhan University, Wuhan 430072, Hubei , China
  • 4Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Wuhan University, Wuhan 430072, Hubei , China
  • show less
    DOI: 10.3788/CJL221306 Cite this Article Set citation alerts
    Zhiqiang Guan, Wei Dai, Xiuping Chen, Hongxing Xu. Mechanism, Characterization, and Device Application of Photothermoelectric Effect[J]. Chinese Journal of Lasers, 2023, 50(1): 0113004 Copy Citation Text show less
    References

    [1] Goldsmid H J[M]. Introduction to thermoelectricity (second edition)(2016).

    [2] Fast J, Aeberhard U, Bremner S P et al. Hot-carrier optoelectronic devices based on semiconductor nanowires[J]. Applied Physics Reviews, 8, 021309(2021).

    [3] Lu X W, Sun L, Jiang P et al. Progress of photodetectors based on the photothermoelectric effect[J]. Advanced Materials, 31, 1902044(2019).

    [4] Wang J Q, Xie Z M, Yeow J T W. Two-dimensional materials applied for room-temperature thermoelectric photodetectors[J]. Materials Research Express, 7, 112001(2020).

    [5] Wu W D, Wang Y X, Zhao Z R. Recent progress of terahertz detectors based on photothermoelectric effect[J]. Chinese Science Bulletin, 67, 714-727(2022).

    [6] Bulat L P, Osvenskii V B, Pshenay-Severin D A. Effect of nonlinearity of the phonon spectrum on the thermal conductivity of nanostructured materials based on Bi-Sb-Te[J]. Journal of Electronic Materials, 43, 3780-3784(2014).

    [7] Dames C, Chen G[M]. Thermoelectrics handbook: macro to nano(2006).

    [8] Li D Y, Wu Y Y, Kim P et al. Thermal conductivity of individual silicon nanowires[J]. Applied Physics Letters, 83, 2934-2936(2003).

    [9] Zhang Y W, Li H, Wang L et al. Photothermoelectric and photovoltaic effects both present in MoS2[J]. Scientific Reports, 5, 7938(2015).

    [10] Song J C W, Rudner M S, Marcus C M et al. Hot carrier transport and photocurrent response in graphene[J]. Nano Letters, 11, 4688-4692(2011).

    [11] Dai W, Liu W K, Yang J et al. Giant photothermoelectric effect in silicon nanoribbon photodetectors[J]. Light: Science & Applications, 9, 120(2020).

    [12] Wang Y X, Niu Y Y, Chen M et al. Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal[J]. ACS Photonics, 6, 895-903(2019).

    [13] Wu W D, Wang Y X, Niu Y Y et al. Thermal localization enhanced fast photothermoelectric response in a quasi-one-dimensional flexible NbS3 photodetector[J]. ACS Applied Materials & Interfaces, 12, 14165-14173(2020).

    [14] Lu X W, Jiang P, Bao X H. Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector[J]. Nature Communications, 10, 138(2019).

    [15] Gu Y Z, Yao X, Geng H X et al. Large-area, flexible, and dual-source co-evaporated Cs3Cu2I5 nanolayer to construct ultra-broadband photothermoelectric detector from visible to terahertz[J]. ACS Applied Electronic Materials, 4, 663-671(2022).

    [16] Vandriel H M. Kinetics of high-density plasmas generated in Si by 1.06- and 0.53- μm picosecond laser pulses[J]. Physical Review B, 35, 8166-8176(1987).

    [17] Bulgakova N M, Stoian R, Rosenfeld A et al. A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion[J]. Applied Physics, 81, 345-356(2005).

    [18] Okuto Y, Crowell C R. Threshold energy effect on avalanche breakdown voltage in semiconductor junctions[J]. Solid-State Electronics, 18, 161-168(1975).

    [19] Yang Y M, Peng X Y, Kim H S et al. Hot carrier trapping induced negative photoconductance in InAs nanowires toward novel nonvolatile memory[J]. Nano Letters, 15, 5875-5882(2015).

    [20] Shur M[M]. Physics of semiconductor devices(1990).

    [21] Jain S C, Roulston D J. A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1-x strained layers[J]. Solid-State Electronics, 34, 453-465(1991).

    [22] Klaassen D B M, Slotboom J W, de Graaff H C. Unified apparent bandgap narrowing in n- and p-type silicon[J]. Solid-State Electronics, 35, 125-129(1992).

    [23] Harper J G, Matthews H E, Bube R H. Photothermoelectric effects in semiconductors: n- and p-type silicon[J]. Journal of Applied Physics, 41, 765-770(1970).

    [24] Dorkel J M, Leturcq P. Carrier mobilities in silicon semi-empirically related to temperature, doping and injection level[J]. Solid-State Electronics, 24, 821-825(1981).

    [25] Chen J K, Tzou D Y, Beraun J E. A semiclassical two-temperature model for ultrafast laser heating[J]. International Journal of Heat and Mass Transfer, 49, 307-316(2006).

    [26] Derrien T J Y, Sarnet T, Sentis M et al. Application of a two-temperature model for the investigation of the periodic structure formation on Si surface in femtosecond laser interaction[J]. Journal of Optoelectronics and Advanced Materials, 12, 610-615(2010).

    [27] Gomes C J, Madrid M, Goicochea J V et al. In-plane and out-of-plane thermal conductivity of silicon thin films predicted by molecular dynamics[J]. Journal of Heat Transfer, 128, 1114-1121(2006).

    [28] Jeong C, Datta S, Lundstrom M. Thermal conductivity of bulk and thin-film silicon: a Landauer approach[J]. Journal of Applied Physics, 111, 093708(2012).

    [29] Lai Y S, Tsai C Y, Chang C K et al. Photothermoelectric effects in nanoporous silicon[J]. Advanced Materials, 28, 2644-2648(2016).

    [30] Gabriel M M, Kirschbrown J R, Christesen J D et al. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump-probe microscopy[J]. Nano Letters, 13, 1336-1340(2013).

    [31] Xie Z M, Wang J Q, Yeow J T W. Doped polyaniline/graphene composites for photothermoelectric detectors[J]. ACS Applied Nano Materials, 5, 7967-7973(2022).

    [32] Li G, Zhang H L, Li Y et al. Ultra-broadband, fast, and polarization-sensitive photoresponse of low-symmetry 2D NdSb2[J]. Nano Research, 15, 5469-5475(2022).

    [33] Cahill D G. Thermal conductivity measurement from 30 to 750 K: the 3ω method[J]. Review of Scientific Instruments, 61, 802-808(1990).

    [34] Holtzman A, Shapira E, Selzer Y. Bismuth nanowires with very low lattice thermal conductivity as revealed by the 3ω method[J]. Nanotechnology, 23, 495711(2012).

    [35] Harman T C. Special techniques for measurement of thermoelectric properties[J]. Journal of Applied Physics, 29, 1373-1374(1958).

    [36] Black J, Conwell E M, Seigle L et al. Electrical and optical properties of some M2V-B N3VI-B semiconductors[J]. Journal of Physics and Chemistry of Solids, 2, 240-251(1957).

    [37] Goldsmid H J, Sharp J W. Estimation of the thermal band gap of a semiconductor from seebeck measurements[J]. Journal of Electronic Materials, 28, 869-872(1999).

    [38] Gibbs Z M, Kim H S, Wang H et al. Band gap estimation from temperature dependent seebeck measurement: deviations from the 2e|S|maxTmax relation[J]. Applied Physics Letters, 106, 022112(2015).

    [39] Goldsmid H, Sharp J. Extrapolation of transport properties and figure of merit of a thermoelectric material[J]. Energies, 8, 6451-6467(2015).

    [40] Mansfield R, Williams W. The electrical properties of bismuth telluride[J]. Proceedings of the Physical Society, 72, 733-741(1958).

    [41] Sun D, Aivazian G, Jones A M et al. Ultrafast hot-carrier-dominated photocurrent in graphene[J]. Nature Nanotechnology, 7, 114-118(2012).

    [42] Bistritzer R, MacDonald A H. Electronic cooling in graphene[J]. Physical Review Letters, 102, 206410(2009).

    [43] Tielrooij K J, Massicotte M, Piatkowski L et al. Hot-carrier photocurrent effects at graphene-metal interfaces[J]. Journal of Physics. Condensed Matter: an Institute of Physics Journal, 27, 164207(2015).

    [44] Ahmed F, Kim Y D, Yang Z et al. Impact ionization by hot carriers in a black phosphorus field effect transistor[J]. Nature Communications, 9, 3414(2018).

    [45] Koppens F H L, Mueller T, Avouris P et al. Photodetectors based on graphene, other two-dimensional materials and hybrid systems[J]. Nature Nanotechnology, 9, 780-793(2014).

    [46] Liu Y, Hu Q Q, Cao Y et al. High-performance ultrabroadband photodetector based on photothermoelectric effect[J]. ACS Applied Materials & Interfaces, 14, 29077-29086(2022).

    [47] Wen J G, Niu Y, Wang P et al. Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity[J]. Carbon, 153, 274-284(2019).

    [48] Zhang M Y, Yeow J T W. Flexible polymer-carbon nanotube composite with high-response stability for wearable thermal imaging[J]. ACS Applied Materials & Interfaces, 10, 26604-26609(2018).

    [49] Zhang M Y, Yeow J. A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite[J]. Carbon, 156, 339-345(2020).

    [50] Wang F, Lv Y Y, Xu Y M et al. Enhanced photothermoelectric detection in Co: BiCuSeO crystals with tunable seebeck effect[J]. Optics Express, 30, 8356-8365(2022).

    [51] Monshat H, Liu L J, Lu M. A narrowband photo-thermoelectric detector using photonic crystal[J]. Advanced Optical Materials, 7, 1801248(2019).

    [52] Li M Y, Tang X, Wang S et al. Synergistic optimization of photothermoelectric performance of a perovkite/graphene composite[J]. Ceramics International, 48, 4366-4370(2022).

    [53] Singh D K, Pant R K, Nanda K K et al. Differentiation of ultraviolet/visible photons from near infrared photons by MoS2/GaN/Si-based photodetector[J]. Applied Physics Letters, 119, 121102(2021).

    [54] Wang Y, Gu Y, Cui A L et al. Fast uncooled mid-wavelength infrared photodetectors with heterostructures of van der waals on epitaxial HgCdTe[J]. Advanced Materials, 34, 2107772(2022).

    [55] Li G, Yin S Q, Tan C Y et al. Fast photothermoelectric response in CVD-grown PdSe2 photodetectors with in-plane anisotropy[J]. Advanced Functional Materials, 31, 2104787(2021).

    [56] Guo W L, Dong Z, Xu Y J et al. Sensitive terahertz detection and imaging driven by the photothermoelectric effect in ultrashort-channel black phosphorus devices[J]. Advanced Science, 7, 1902699(2020).

    [57] Castilla S, Terrés B, Autore M et al. Fast and sensitive terahertz detection using an antenna-integrated graphene pn junction[J]. Nano Letters, 19, 2765-2773(2019).

    [58] Berger L I[M]. CRC handbook of chemistry and physics(2011).

    [59] de Boor J, Kim D S, Ao X et al. Temperature and structure size dependence of the thermal conductivity of porous silicon[J]. EPL (Europhysics Letters), 96, 16001(2011).

    [60] Hochbaum A I, Chen R K, Delgado R D et al. Enhanced thermoelectric performance of rough silicon nanowires[J]. Nature, 451, 163-167(2008).

    [61] Boukai A I, Bunimovich Y, Tahir-Kheli J et al. Silicon nanowires as efficient thermoelectric materials[J]. Nature, 451, 168-171(2008).

    [62] Xu X D, Gabor N M, Alden J S et al. Photo-thermoelectric effect at a graphene interface junction[J]. Nano Letters, 10, 562-566(2010).

    [63] Park J, Ahn Y H, Ruiz-Vargas C. Imaging of photocurrent generation and collection in single-layer graphene[J]. Nano Letters, 9, 1742-1746(2009).

    [64] Echtermeyer T J, Nene P S, Trushin M et al. Photothermoelectric and photoelectric contributions to light detection in metal-graphene-metal photodetectors[J]. Nano Letters, 14, 3733-3742(2014).

    [65] Buscema M, Barkelid M, Zwiller V et al. Large and tunable photothermoelectric effect in single-layer MoS2[J]. Nano Letters, 13, 358-363(2013).

    [66] Pearton S J, Zolper J C, Shul R J et al. GaN: processing, defects, and devices[J]. Journal of Applied Physics, 86, 1-78(1999).

    [67] Prechtel L, Padilla M, Erhard N et al. Time-resolved photoinduced thermoelectric and transport currents in GaAs nanowires[J]. Nano Letters, 12, 2337-2341(2012).

    [68] Léonard F, Song E D, Li Q M et al. Simultaneous thermoelectric and optoelectronic characterization of individual nanowires[J]. Nano Letters, 15, 8129-8135(2015).

    [69] Cornett J E, Rabin O. Thermoelectric figure of merit calculations for semiconducting nanowires[J]. Applied Physics Letters, 98, 182104(2011).

    [70] Luxmoore I J, Liu P Q, Li P L et al. Graphene-metamaterial photodetectors for integrated infrared sensing[J]. ACS Photonics, 3, 936-941(2016).

    [71] Li H, Anugrah Y, Koester S J et al. Optical absorption in graphene integrated on silicon waveguides[J]. Applied Physics Letters, 101, 111110(2012).

    [72] Schuler S, Schall D, Neumaier D et al. Controlled generation of a p-n junction in a waveguide integrated graphene photodetector[J]. Nano Letters, 16, 7107-7112(2016).

    [73] Viti L, Hu J, Coquillat D et al. Black phosphorus terahertz photodetectors[J]. Advanced Materials, 27, 5567-5572(2015).

    [74] Tong J Y, Muthee M, Chen S Y et al. Antenna enhanced graphene THz emitter and detector[J]. Nano Letters, 15, 5295-5301(2015).

    [75] Chang S W, Hazra J, Amer M et al. A comparison of photocurrent mechanisms in quasi-metallic and semiconducting carbon nanotube pn-junctions[J]. ACS Nano, 9, 11551-11556(2015).

    [76] Ma Q, Gabor N M, Andersen T I et al. Competing channels for hot electron cooling in graphene[J]. Physical Review Letters, 112, 247401(2014).

    [77] Zolotavin P, Evans C, Natelson D. Photothermoelectric effects and large photovoltages in plasmonic Au nanowires with nanogaps[J]. The Journal of Physical Chemistry Letters, 8, 1739-1744(2017).

    [78] Venuthurumilli P K, Ye P D, Xu X F. Plasmonic resonance enhanced polarization-sensitive photodetection by black phosphorus in near infrared[J]. ACS Nano, 12, 4861-4867(2018).

    [79] Dadarlat D, Streza M, King R C Y et al. The photothermoelectric technique (PTE), an alternative photothermal calorimetry[J]. Measurement Science and Technology, 25, 015603(2014).

    [80] Basov D N, Fogler M M, García de Abajo F J. Polaritons in van der Waals materials[J]. Science, 354, aag1992(2016).

    [81] Li W, Valentine J G. Harvesting the loss: surface plasmon-based hot electron photodetection[J]. Nanophotonics, 6, 177-191(2017).

    [82] Wu D, Yan K, Zhou Y et al. Plasmon-enhanced photothermoelectric conversion in chemical vapor deposited graphene p-n junctions[J]. Journal of the American Chemical Society, 135, 10926-10929(2013).

    [83] Xu B, Feng T L, Agne M T et al. Highly porous thermoelectric nanocomposites with low thermal conductivity and high figure of merit from large-scale solution-synthesized Bi2Te2.5Se0.5 hollow nanostructures[J]. Angewandte Chemie (International Ed. in English), 56, 3546-3551(2017).

    [84] Kuriakose M, Depriester M, King R C Y et al. Photothermoelectric effect as a means for thermal characterization of nanocomposites based on intrinsically conducting polymers and carbon nanotubes[J]. Journal of Applied Physics, 113, 044502(2013).

    [85] Magnusson R, Wang S S. Transmission bandpass guided-mode resonance filters[J]. Applied Optics, 34, 8106-8109(1995).

    [86] Tibuleac S, Magnusson R. Reflection and transmission guided-mode resonance filters[J]. Journal of the Optical Society of America A, 14, 1617-1626(1997).

    [87] Erchak A A, Ripin D J, Fan S H et al. Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode[J]. Applied Physics Letters, 78, 563-565(2001).

    [88] Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Physical Review B, 65, 235112(2002).

    [89] Kodali A K, Schulmerich M, Ip J et al. Narrowband midinfrared reflectance filters using guided mode resonance[J]. Analytical Chemistry, 82, 5697-5706(2010).

    [90] Liu J N, Schulmerich M V, Bhargava R et al. Optimally designed narrowband guided-mode resonance reflectance filters for mid-infrared spectroscopy[J]. Optics Express, 19, 24182-24197(2011).

    [91] Chen M, Wang Y X, Ma W L et al. Ionic liquid gating enhanced photothermoelectric conversion in three-dimensional microporous graphene[J]. ACS Applied Materials & Interfaces, 12, 28510-28519(2020).

    [92] Olaya D, Hurtado-Morales M, Gómez D et al. Large thermoelectric figure of merit in graphene layered devices at low temperature[J]. 2D Materials, 5, 011004(2017).

    [93] Chen W N, Talreja D, Eichfeld D et al. Achieving minimal heat conductivity by ballistic confinement in phononic metalattices[J]. ACS Nano, 14, 4235-4243(2020).

    [94] Li K, Suzuki D, Kawano Y. Series photothermoelectric coupling between two composite materials for a freely attachable broadband imaging sheet[J]. Advanced Photonics Research, 2, 2000095(2021).

    [95] Kallatt S, Umesh G, Bhat N et al. Photoresponse of atomically thin MoS2 layers and their planar heterojunctions[J]. Nanoscale, 8, 15213-15222(2016).

    [96] Lopez-Sanchez O, Lembke D, Kayci M et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 8, 497-501(2013).

    [97] Liu W K, Wang W Q, Guan Z Q et al. A plasmon modulated photothermoelectric photodetector in silicon nanostripes[J]. Nanoscale, 11, 4918-4924(2019).

    [98] Yan Y, Liao Z M, Ke X X et al. Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons[J]. Nano Letters, 14, 4389-4394(2014).

    [99] Kastl C, Karnetzky C, Karl H et al. Ultrafast helicity control of surface currents in topological insulators with near-unity fidelity[J]. Nature Communications, 6, 6617(2015).

    [100] Suzuki R, Sakano M, Zhang Y J et al. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry[J]. Nature Nanotechnology, 9, 611-617(2014).

    [101] Konabe S, Yamamoto T. Valley photothermoelectric effects in transition-metal dichalcogenides[J]. Physical Review B, 90, 075430(2014).

    [102] Alonso-González P, Nikitin A Y, Gao Y D et al. Acoustic terahertz graphene plasmons revealed by photocurrent nanoscopy[J]. Nature Nanotechnology, 12, 31-35(2017).

    [103] Woessner A, Lundeberg M B, Gao Y D et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures[J]. Nature Materials, 14, 421-425(2015).

    [104] Park T, Na J, Kim B et al. Photothermally activated pyroelectric polymer films for harvesting of solar heat with a hybrid energy cell structure[J]. ACS Nano, 9, 11830-11839(2015).

    [105] Wang N, Han L, He H C et al. A novel high-performance photovoltaic-thermoelectric hybrid device[J]. Energy & Environmental Science, 4, 3676-3679(2011).

    [106] Cao H L, Aivazian G, Fei Z Y et al. Photo-nernst current in graphene[J]. Nature Physics, 12, 236-239(2016).

    [107] Lin L H, Wang M S, Peng X L et al. Opto-thermoelectric nanotweezers[J]. Nature Photonics, 12, 195-201(2018).

    [108] Lundeberg M B, Gao Y D, Woessner A et al. Thermoelectric detection and imaging of propagating graphene plasmons[J]. Nature Materials, 16, 204-207(2017).

    Zhiqiang Guan, Wei Dai, Xiuping Chen, Hongxing Xu. Mechanism, Characterization, and Device Application of Photothermoelectric Effect[J]. Chinese Journal of Lasers, 2023, 50(1): 0113004
    Download Citation