• Journal of Infrared and Millimeter Waves
  • Vol. 35, Issue 2, 147 (2016)
JI Ling1、2、*, YANG Ai-Lin1、2, LIN Xiao-Feng1、2, and JIN Xian-Min1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2016.02.005 Cite this Article
    JI Ling, YANG Ai-Lin, LIN Xiao-Feng, JIN Xian-Min. Polarization preservation of partially coherent Hermite-Gaussian beams for multiple-degrees-of-freedom free-space communication[J]. Journal of Infrared and Millimeter Waves, 2016, 35(2): 147 Copy Citation Text show less
    References

    [1] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys. Rev. A, 1992, 45: 8185.

    [2] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Adv. Opt. Photonics, 2015, 7: 66-106.

    [3] Gibson G, Courtial J, Padgett M J. Free-space information transfer using light beams carrying orbital angular momentum[J]. Opt. Express, 2004, 12(22): 5448-5456.

    [4] Yan Y, Xie G D, Lavery M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nat. Commun., 2014, 5: 4876.

    [5] Vaziri A, Weihs G, Zeilinger A. Experimental two-photon, three-dimensional entanglement for quantum communication[J]. Phys. Rev. Lett., 2002, 89: 2404011-2404014.

    [6] Fickler R, Lapkiewicz R, Plick W N, et al. Quantum entanglement of high angular momenta[J]. Science, 2012, 338: 640-643.

    [7] Barreiro J T, Wei T C, Kwiat P G. Beating the channel capacity limit for linear photonic superdense coding[J]. Nature, 2008, 4: 282-286.

    [8] Wang X L, Cai X D, Su Z E, et al. Quantum teleportation of multiple degrees of Quantum teleportation of multiple degrees of a single photon[J]. Nature, 2015, 518: 516.

    [9] Andrews L C, Phillips R. Laser Beam Propagation through Random Media[M]. Beltingham: SPIE Press, 2005, 15-21. 480-482.

    [10] Mandel L, Wolf E. Optical coherence and quantum optics[M]. Cambridge: Cambridge University Press, 1995, 340-373.

    [11] Wolf E. Unified theory of coherence and polarization of random electromagnetic beams[J]. Phys. Lett. A, 2003, 312(5-6): 263-267.

    [12] Wu H Y, Sheng S, Huang Z S, et al. Study on beam propagation through a double-adaptive-optics optical system in turbulent atmosphere[J]. Opt. Quant. Electron, 2013, 45(5): 411-421.

    [13] Wolf, E. Polarization invariance in beam propagation[J]. Opt. Lett., 2007,32(23): 3400-3401.

    [14] Korotkova O, Gbur G. Angular spectrum representation for propagation of random electromagnetic beams in a turbulent atmosphere[J]. J. Opt. Soc. Am. A, 2007,24(9): 2728-2736.

    [15] Sheng X L, Zhang Y X, Wang X, et al. The effects of non-Kolmogorov turbulence on the orbital angular momentum of a photon-beam propagation[J]. Opt. Quant. Electron. 2012, 43(6): 121-127.

    [16] Wu G, Wang F, Cai Y J. Coherence and polarization properties of radially polarized beam with variable spatial coherence[J]. Opt. Express, 2012,20(27): 28301-28318.

    [17] Eyyuboglu H T, Baykal Y, Cai Y J. Degree of polarization for partially coherent general beams in turbulent atmosphere[J]. Appl. Phys. B, 2007,89(1): 91-97.

    [18] Zhao D M, Wolf E. Light beams whose degree of polarization does not change on polarization[J]. Opt. Commun,2008, 281(11): 3067-3070.

    [19] Ding C L, Zhao Z G, Li X F, et al. Influence of turbulent atmosphere on polarization properties of stochastic electromagnetic pulsed beams[J]. Chin. Phys. Lett, 2011, 28: 024214.

    [20] Huang Y P, Wang F H, Gao Z H, et al. Propagation properties of partially coherent electromagnetic hyperbolic-sine-Gaussian vortex beams through non-Kolmogorov turbulence[J]. Opt. Express. 2015, 23(2): 1088-1102.

    [21] Chu X X. Evolution of airy beam in turbulence[J]. Opt. Lett., 2011, 36(14): 2701-2703.

    [22] Zhang J K, Ding S L, Zhai H L, et al. Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication system[J]. Opt. Express, 2014, 22(26): 32482-32488.

    [23] Siegman A E. Hermite-gaussian functions of complex argument as optical-beam eigenfunctions[J]. J. Opt. Soc. Am, 1973, 63(9):1093-1094.

    [24] Shin S Y, Felsen L B. Gaussian beam modes by multipoles with complex source points[J]. J. Opt. Soc. Am, 1997, 67(5):699-700.

    [25] Zauderer E. Complex argument Hermite-Gaussian and Laguerre-Gaussian beams[J]. J. Opt. Soc. Am, 1986, 3(4): 465-469.

    [26] Wang F, Cai Y J, Eyyuboglu H T, et al. Partially coherent elegant Hermite-Gaussian beam in turbulent atmosphere[J]. Appl. Phys. B, 2011, 103: 461-469.

    [27] Ji X L, Li X Q. Effective radius of curvature of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence[J]. J. Opt. 2010, 12: 035403.

    [28] Zhang L C, Yin X, Zhu Y. Polarization fluctuations of partially coherent Hermite-Gaussian beams in a slant turbulent channel[J]. Optik, 2014, 125(13): 3272-3276.

    [29] Zhang L C, Zhang Y X, Zhu Y. Quantum polarization fluctuations of a partially coherent Laguerre-Gaussian beam in a slant turbulent channel[J]. Opt. Commun., 2014, 322: 16-21.

    [30] Zhang Y X, Wang Y G, Wang J Y, et al. Polarization fluctuations of Gaussian Schell-model type photon beams in a slant channel with non-Kolmogorov turbulence[J]. Optik, 2012, 123(17): 1511-1514.

    [31] Yura H T. Mutual coherence function of a finite cross section optical beam propagating in a turbulent medium[J]. Appl. Optics, 1972, 11(6): 1399-1406.

    [32] Gori F, Santarsiero M, Piquero G, et al. Partially polarized Gaussian Shell-model beams[J]. J. Opt. A: Pure Appl. Opt, 2001, 3:1-9.

    JI Ling, YANG Ai-Lin, LIN Xiao-Feng, JIN Xian-Min. Polarization preservation of partially coherent Hermite-Gaussian beams for multiple-degrees-of-freedom free-space communication[J]. Journal of Infrared and Millimeter Waves, 2016, 35(2): 147
    Download Citation