[1] BRENNER L F, ALIO J L, VEGA-ESTRADA A, et al.. Clinical grading of post-LASIK ectasia related to visual limitation and predictive factors for vision loss[J]. J. Cataract Refract. Surg., 2012, 38(10): 1817-1826.
[2] JABBUR N S, SAKATANI K, O'BRIEN T P. Survey of complications and recommendations for management in dissatisfied patients seeking a consultation after refractive surgery[J]. J. Cataract Refract. Surg., 2004, 30(9): 1867-1874.
[3] KONSTANTOPOULOS A, HOSSAIN P, ANDERSON D F. Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis[J]. Br. J. Ophthalmol., 2007, 91(4): 551-557.
[4] KOZOBOLIS V, SIDEROUDI H, GIARMOUKAKIS A, et al.. Corneal biomechanical properties and anterior segment parameters in forme fruste keratoconus[J]. Eur. J. Ophthalmol., 2012, 22(6): 920-930.
[5] HUANG Y P, ZHENG Y P, WANG Z P, et al.. An optical coherence tomography (OCT)-based air jet indentation system for measuring the mechanical properties of soft tissues[J]. Measurement Science & Technology, 2009, 20: 015805.
[6] APTEL F, CHIQUET C, GIMBERT A, et al.. Anterior segment biometry using spectral-domain optical coherence tomography[J]. J. Refract. Surg., 2014, 30(5): 1-7.
[7] ROLLE T, DALLORTO L, BRIAMONTE C, et al.. Retinal nerve fibre layer and macular thickness analysis with Fourier domain optical coherence tomography in subjects with a positive family history for primary open angle glaucoma[J]. Br. J. Ophthalmol., 2014, 98(9): 1240-1244 .
[8] TUDOR D, KAJIC V, REY S, et al.. Non-invasive detection of early retinal neuronal degeneration by ultrahigh resolution optical coherence tomography[J]. Plos One, 2014, 9(4): e93916.
[9] GONZALEZ-MEIJOME J M, CERVINO A, CARRACEDO G, et al.. High-resolution spectral domain optical coherence tomography technology for the visualization of contact lens to cornea relationships[J]. Cornea, 2010, 29(12): 1359-1367.
[10] UENO Y, HIRAOKA T, BEHEREGARAY S, et al.. Age-related changes in anterior, posterior, and total corneal astigmatism[J]. J. Refract Surg., 2014, 30(3): 192-197.
[11] ZHOU Y, TIAN L, WANG N, et al.. Anterior segment optical coherence tomography measurement of LASIK flaps: femtosecond laser vs. microkeratome[J]. J. Refract Surg., 2011, 27(6): 408-416.
[12] MOGHIMI S, ZANDVAKIL N, VAHEDIAN Z, et al.. Acute angle closure: qualitative and quantitative evaluation of the anterior segment using anterior segment optical coherence tomography[J]. Clin. Experiment Ophthalmol, 2014, 42(7): 615-622.
[13] HIMSCHALL N, NORRBY S, WEBER M, et al.. Using continuous intraoperative optical coherence tomography measurements of the aphakic eye for intraocular lens power calculation[J]. Br. J. Ophthalmol, 2015, 99(1): 7-10.
[14] ALONSO-CANEIRO D, KARMOWSKI K, KAL-UZNY B J, et al.. Assessment of corneal dynamics with high-speed swept source optical coherence tomography combined with an air puff system[J]. Opt. Express, 2011, 19(15): 14188-14199.
[15] Jr AMBROSIO R, NOGUEIRA L P, CALDAS D L, et al.. Evaluation of corneal shape and biomechanics before LASIK[J]. Int. Ophthalmol Clin., 2011, 51(2): 11-38.
[16] SHAH S, LAIQUZZAMAN M, BHOJWANI R, et al.. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes[J]. Invest Ophthalmol Vis. Sci., 2007, 48(7): 3026-3031.
[17] LUCE D A. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer[J]. J. Cataract Refract Surg., 2005, 31(1): 156-162.
[18] DUBBELMAN M, WEEBER H A, VAN der HEIJDE R G, et al.. Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography[J]. Acta Ophthalmol Scand, 2002, 80(4): 379-383.
[19] PEREZ-ESCUDERO A, DORRONSORO C, SAWIDES L, et al.. Minor influence of myopic laser in situ keratomileusis on the posterior corneal surface[J]. Invest Ophthalmol Vis. Sci., 2009, 50(9): 4146-4154.
[20] KURITA Y, KEMPF R, IIDA Y, et al.. Eye stiffness measurement by probe contact method[J]. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2006, 1: 2312-2315.
[21] ZHENG Y P, CHEN J G, LING H Y. Development of an ultrasound platform for the evaluation of planter soft tissue properties: a feasibility study on silicone phantom feet[J]. Instrumentation Science & Technology, 2011, 39(3): 248-260.
[22] GEFEN A, SHALOM R, ELAD D, et al.. Biomechanical analysis of the keratoconic cornea[J]. J. Mechanical Behavior of Biomedical Meterials, 2009, 2(3): 224-236.