• Chinese Journal of Lasers
  • Vol. 49, Issue 8, 0802012 (2022)
Guangwen Ye, Qianwen Liu, Xi’an Fan, Yanxi Zhang, and Xiangdong Gao*
Author Affiliations
  • Guangdong Provincial Welding Engineering Technology Research Center, School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
  • show less
    DOI: 10.3788/CJL202249.0802012 Cite this Article Set citation alerts
    Guangwen Ye, Qianwen Liu, Xi’an Fan, Yanxi Zhang, Xiangdong Gao. Effect of Droplet Transition on Weld Surface Formation of Laser-MIG Hybrid Welding[J]. Chinese Journal of Lasers, 2022, 49(8): 0802012 Copy Citation Text show less
    References

    [1] Steen W M. Arc augmented laser processing of materials[J]. Journal of Applied Physics, 51, 5636-5641(1980).

    [2] Gao X D, Zhang Y, You D Y et al. Analysis of molten pool configuration and welding stability during high-power fiber laser welding[J]. Transactions of the China Welding Institution, 32, 13-16, 113(2011).

    [3] Shuang Y Q, Chen W Z, Wang K J et al. Vision system for closed -loop control of the penetration in laser-MIG hybrid welding[J]. Journal of Tsinghua University (Science and Technology), 48, 1891-1894(2008).

    [4] Gao X D, Wen Q, Katayama S. Analysis of high-power disk laser welding stability based on classification of plume and spatter characteristics[J]. Transactions of Nonferrous Metals Society of China, 23, 3748-3757(2013).

    [5] You D Y, Gao X D, Katayama S. Multisensor fusion system for monitoring high-power disk laser welding using support vector machine[J]. IEEE Transactions on Industrial Informatics, 10, 1285-1295(2014).

    [6] Zhang Z F, Chen H B, Xu Y L et al. Multisensor-based real-time quality monitoring by means of feature extraction, selection and modeling for Al alloy in arc welding[J]. Mechanical Systems and Signal Processing, 60/61, 151-165(2015).

    [7] Frostevarg J, Kaplan A F H, Lamas J. Comparison of CMT with other arc modes for laser-arc hybrid welding of steel[J]. Welding in the World, 58, 649-660(2014).

    [8] Bunaziv I, Frostevarg J, Akselsen O M et al. Process stability during fiber laser-arc hybrid welding of thick steel plates[J]. Optics and Lasers in Engineering, 102, 34-44(2018).

    [9] Meng Y F, Gao M, Zeng X Y. Quantitative analysis of synergic effects during laser-arc hybrid welding of AZ31 magnesium alloy[J]. Optics and Lasers in Engineering, 111, 183-192(2018).

    [10] Wang L, Li X W, Gao M et al. Stabilization mechanism and weld morphological features of fiber laser-arc hybrid welding of pure copper[J]. Journal of Manufacturing Processes, 27, 207-213(2017).

    [11] Gao X D, Wang L, Chen Z Q et al. Process stability analysis and weld formation evaluation during disk laser-mag hybrid welding[J]. Optics and Lasers in Engineering, 124, 105835(2020).

    [12] Lü X Q, Shen J, Li H et al. Droplet transfer analysis in pulsed gas metal arc welding[J]. Transactions of the China Welding Institution, 36, 39-42, 115(2015).

    [13] Ren W J, Zheng H J, Li Z G et al. Effects of pulse arc on droplet transfer and spatter of laser pulsed-arc hybrid welding[J]. Chinese Journal of Lasers, 47, 0402007(2020).

    [14] Chen M H, Li C B, Liu L M. Coupling behavior of plasmas during laser-arc hybrid welding process[J]. Transactions of the China Welding Institution, 35, 53-56, 115(2014).

    [15] Gao M, Zeng X Y, Hu Q W. Effects of welding parameters on melting energy of CO2 laser-GMA hybrid welding[J]. Science and Technology of Welding and Joining, 11, 517-522(2006).

    [16] Liu F D, Zhang H, Du S F et al. Influence of laser power on arc and droplet behaviors in droplets on CO2 laser-MAG arc hybrid welding[J]. Journal of Mechanical Engineering, 49, 75-82(2013).

    [17] Liu S Y, Liu F D, Zhang H et al. Analysis of droplet transfer mode and forming process of weld bead in CO2 laser-MAG hybrid welding process[J]. Optics & Laser Technology, 44, 1019-1025(2012).

    [18] Peng J, Xu H Q, Wang X X et al. Numerical simulation of influence of welding speed on dynamic behavior of laser welding molten pool with filler metal[J]. Chinese Journal of Lasers, 47, 0302005(2020).

    [19] Peng J, Xu H Q, Wang X X et al. Numerical simulation of influence of droplet on keyhole and molten pool of laser welding[J]. Chinese Journal of Lasers, 47, 0702004(2020).

    [20] Zhang W, Tang B, Guo Y B et al. Investigation on surface forming and stability of laser + pulse melting gas metal arc hybrid welding[J]. Laser & Optoelectronics Progress, 57, 171401(2020).

    [21] Ma B, Huang Y J, Zhang Y X et al. Side-surface-form analysis of arc additive manufacturing based on laser vision sensing system[J]. Chinese Journal of Lasers, 46, 1102005(2019).

    [22] Gao M, Zeng X Y, Yan J et al. Heat sources interaction of laser-arc hybrid welding[J]. Laser Technology, 31, 465-468(2007).

    [23] Zhang D F, Wang T J, Yang Y et al. Influence of fiber laser+ MIG arc hybrid welding parameters on welding morphology of 6009 Al alloy[J]. Hot Working Technology, 44, 213-215(2015).

    [24] Yao P, Zhou K, Zhu Q. Quantitative evaluation method of arc sound spectrum based on sample entropy[J]. Mechanical Systems and Signal Processing, 92, 379-390(2017).

    [25] Liu L X, Liu B, Huang H et al. No-reference image quality assessment based on spatial and spectral entropies[J]. Signal Processing: Image Communication, 29, 856-863(2014).

    Guangwen Ye, Qianwen Liu, Xi’an Fan, Yanxi Zhang, Xiangdong Gao. Effect of Droplet Transition on Weld Surface Formation of Laser-MIG Hybrid Welding[J]. Chinese Journal of Lasers, 2022, 49(8): 0802012
    Download Citation