• Laser & Optoelectronics Progress
  • Vol. 57, Issue 17, 171402 (2020)
Yun Zhao1、2, Guorui Zhao2、**, Wenyou Ma2, Li Zheng1、*, and Min Liu2
Author Affiliations
  • 1School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning 110870, China
  • 2National Key Laboratory for Modern Materials Surface Engineering Technology, Key Laboratory of Guangdong for Modern Surface Engineering Technology, Guangdong Institute of New Materials, Guangzhou, Guangdong 510651, China
  • show less
    DOI: 10.3788/LOP57.171402 Cite this Article Set citation alerts
    Yun Zhao, Guorui Zhao, Wenyou Ma, Li Zheng, Min Liu. Study on Process ,Structure, and Properties of Nickel Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2020, 57(17): 171402 Copy Citation Text show less
    References

    [1] Li X B, Zhang P. Determining methods of valence of metal[J]. Materials Review, 24, 102-107(2010).

    [2] Zhang G L. Preparation and properties of multi-component self-supporting nanoporous nickel-based hydrogen evolution electrode[D]. Tianjin: Tianjin Polytechnic University, 4-5(2018).

    [3] Martínez W M, Fernández A M, Cano U et al. Synthesis of nickel-based skeletal catalyst for an alkaline electrolyzer[J]. International Journal of Hydrogen Energy, 35, 8457-8462(2010).

    [4] Solmaz R, Döner A, Kardaş G. Electrochemical deposition and characterization of NiCu coatings as cathode materials for hydrogen evolution reaction[J]. Electrochemistry Communications, 10, 1909-1911(2008).

    [5] Campillo B, Sebastian P J, Gamboa S A et al. Electrodeposited Ni-Co-B alloy: application in water electrolysis[J]. Materials Science and Engineering: C, 19, 115-118(2002).

    [6] Shan Z Q, Liu Y J, Chen Z et al. Amorphous Ni-S-Mn alloy as hydrogen evolution reaction cathode in alkaline medium[J]. International Journal of Hydrogen Energy, 33, 28-33(2008).

    [7] Jaron A, Zurek Z. New porous Fe64/Ni36 and Ni70/Cu30 electrodes for hydrogen evolution: production and properties[J]. Solid State Ionics, 181, 976-981(2010).

    [8] Herraiz-Cardona I, Ortega E, Vázquez-Gómez L et al. Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 37, 2147-2156(2012).

    [9] He H W, Liu H J, Liu F et al. Study on micro-appearance, structure and properties of hydrogen evolution reaction of nickel-sulphur alloy coatings electrodeposited on the nickel foam substrate[J]. Journal of Functional Materials, 37, 87-91(2006).

    [10] Tanaka S, Hirose N, Tanaki T. Evaluation of Raney-nickel cathodes prepared with aluminum powder and tin powder[J]. International Journal of Hydrogen Energy, 25, 481-485(2000).

    [11] Endoh E, Otouma H, Morimoto T et al. New Raney nickel composite-coated electrode for hydrogen evolution[J]. International Journal of Hydrogen Energy, 12, 473-479(1987).

    [12] HashimotoK, SasakiT, MeguroS, et al. and EngineeringA, 2004, 375/376/377: 942- 945.

    [13] Ezaki H, Morinaga M, Watanabe S et al. Hydrogen overpotential for intermetallic compounds, TiAl, FeAl and NiAl, containing 3d transition metals[J]. Electrochimica Acta, 39, 1769-1773(1994).

    [14] Ren Z Y. Preparation and properties of porous nickel membrane-CNTs composite electrode[D]. Tianjin: Tianjin Polytechnic University(2017).

    [15] Zhou Q, Li Z Y. Preparation and hydrogen evolution properties of nanoporous Ni, Ni-Mo alloys and their oxides[J]. Chinese Journal of Inorganic Chemistry, 34, 2188-2196(2018).

    [16] Zhang B C, Bi G J, Nai S et al. Microhardness and microstructure evolution of TiB2 reinforced Inconel 625/TiB2 composite produced by selective laser melting[J]. Optics & Laser Technology, 80, 186-195(2016).

    [17] Zhang D Y. Laser melting technology in the selected area of Beijing University of Technology——manufacture of pure nickel microchannel heat sink[J]. Industrial Technology Innovation, 4, 101-103(2017).

    [18] Yan A R, Yang T T, Wang Y L et al. Thermal properties and mechanical properties of selective laser melting different layer thicknesses of Ni powder[J]. Chinese Journal of Lasers, 43, 0203004(2016).

    [19] Zhang J F, Shen Y F, Zhao J F et al. Melting-solidifying characteristic of ni-based alloy powders by selective laser sintering[J]. Chinese Journal of Lasers, 30, 763-768(2003).

    [20] Zhang Y J, Wang H B, Song X Y et al. Preparation and performance of spherical Ni powder for SLM processing[J]. Acta Metallurgica Sinica, 54, 1833-1842(2018).

    [21] Zong X W, Gao Q, Zhou H Z et al. Study on 316L anisotropy and laser energy density based on laser selective melting[J]. Chinese Journal of Lasers, 46, 0502003(2019).

    [22] Feng Y Q, Xie G Y, Zhang B et al. Influence of laser power and surface condition on bailing behavior in selective laser melting[J]. Acta Aeronautica et Astronautica Sinica, 40, 229-238(2019).

    [23] Gu D D, Shen Y F. Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS[J]. Journal of Alloys and Compounds, 473, 107-115(2009).

    [24] Li J. Study on the processing parameters and properties of Ti6Al4V and its porous structures fabricated by selective laser melting[D]. Guangzhou: South China University of Technology, 21-26(2018).

    [25] Cao R C. Study on the fabrication process of 18Ni300 Maraging steel by selective laser melting and the experimental analysis on laser melting of metal powders[D]. Shanghai: Shanghai Jiaotong University, 44-46(2014).

    [26] Hou W, Chen J, Chu S L et al. Anisotropy of microstructure and tensile properties of AlSi10Mg formed by selective laser melting[J]. Chinese Journal of Lasers, 45, 0702003(2018).

    [27] Zhang B C, Bi G J, Wang P et al. Microstructure and mechanical properties of Inconel 625/nano-TiB2 composite fabricated by LAAM[J]. Materials & Design, 111, 70-79(2016).

    [28] Wang P, Zhang B C, Tan C C et al. Microstructural characteristics and mechanical properties of carbon nanotube reinforced Inconel 625 parts fabricated by selective laser melting[J]. Materials & Design, 112, 290-299(2016).

    [29] Sing S L, Wiria F E, Yeong W Y. Selective laser melting of titanium alloy with 50 wt% tantalum: effect of laser process parameters on part quality[J]. International Journal of Refractory Metals and Hard Materials, 77, 120-127(2018).

    [30] Schneider J, Lund B, Fullen M. Effect of heat treatment variations on the mechanical properties of Inconel 718 selective laser melted specimens[J]. Additive Manufacturing, 21, 248-254(2018).

    [31] Criales L E, Arısoy Y M, Lane B et al. Laser powder bed fusion of nickel alloy 625: experimental investigations of effects of process parameters on melt pool size and shape with spatter analysis[J]. International Journal of Machine Tools and Manufacture, 121, 22-36(2017).

    [32] Chen X J, Zhao G R, Dong D D et al. A study of selective laser melting Inconel 625: process, microstructure and mechanical properties[J]. Chinese Journal of Lasers, 46, 1202002(2019).

    [33] Tan C L, Zhou K S, Ma W Y et al. Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel[J]. Materials & Design, 134, 23-34(2017).

    [34] Basak A, Das S. Microstructure of nickel-base superalloy MAR-M247 additively manufactured through scanning laser epitaxy (SLE)[J]. Journal of Alloys and Compounds, 705, 806-816(2017).

    [35] Wen S F, Hu H, Zhou Y et al. Enhanced hardness and wear property of S136 mould steel with nano-TiB2 composites fabricated by selective laser melting method[J]. Applied Surface Science, 457, 11-20(2018).

    [36] Tian J, Wei Q S, Zhu W Z et al. Selective laser melting process and mechanical properties of Cu-Al-Ni-Ti alloy[J]. Chinese Journal of Lasers, 46, 0302001(2019).

    [37] Du J Y. Research on process experiment of selective laser melting with GH4169Nickel-based alloy powder[D]. Taiyuan: North University of China, 49-53(2014).

    Yun Zhao, Guorui Zhao, Wenyou Ma, Li Zheng, Min Liu. Study on Process ,Structure, and Properties of Nickel Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2020, 57(17): 171402
    Download Citation