• Photonics Research
  • Vol. 11, Issue 9, 1583 (2023)
Gangyi Zhu1、*, Xin Ji1, Zhenfu Zhang2, Xingcan Yan1, Ying Yang1, Feifei Qin1, Xin Li1, Jiagui Wu3, Xiaojuan Sun4, Junbo Yang2、5, and Yongjin Wang1
Author Affiliations
  • 1GaN Optoelectronic Integration International Cooperation Joint Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
  • 2College of Arts & Science, National University of Defense Technology, Changsha 410003, China
  • 3School of Physical Science and Technology, Southwest University, Chongqing 400715, China
  • 4State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
  • 5e-mail: yangjunbo@nudt.edu.cn
  • show less
    DOI: 10.1364/PRJ.490145 Cite this Article Set citation alerts
    Gangyi Zhu, Xin Ji, Zhenfu Zhang, Xingcan Yan, Ying Yang, Feifei Qin, Xin Li, Jiagui Wu, Xiaojuan Sun, Junbo Yang, Yongjin Wang. Electrically pumped optomechanical beam GaN-LED accelerometer based on the quantum-confined Stark effect[J]. Photonics Research, 2023, 11(9): 1583 Copy Citation Text show less
    References

    [1] F. Liu, S. Alaie, Z. C. Leseman, M. Hossein-Zadeh. Sub-pg mass sensing and measurement with an optomechanical oscillator. Opt. Express, 21, 19555-19567(2013).

    [2] F. Zhou, Y. Bao, R. Madugani, D. A. Long, J. J. Gorman, T. W. LeBrun. Broadband thermomechanically limited sensing with an optomechanical accelerometer. Optica, 8, 350-356(2021).

    [3] J. Manley, M. Chowdhury, D. Grin, S. Singh, D. J. Wilson. Searching for vector dark matter with an optomechanical accelerometer. Phys. Rev. Lett., 126, 061301(2021).

    [4] X. Zou, P. Thiruvenkatanathan, A. A. Seshia. A seismic-grade resonant MEMS accelerometer. J. Microelectromech. Syst., 23, 768-770(2014).

    [5] R. Middlemiss, A. Samarelli, D. Paul, J. Hough, S. Rowan, G. Hammond. Measurement of the earth tides with a MEMS gravimeter. Nature, 531, 614-617(2016).

    [6] C. Acar, A. M. Shkel. Experimental evaluation and comparative analysis of commercial variable-capacitance MEMS accelerometers. J. Micromech. Microeng., 13, 634-645(2003).

    [7] H. Kulah, J. Chae, N. Yazdi, K. Najafi. Noise analysis and characterization of a sigma-delta capacitive microaccelerometer. IEEE J. Solid-State Circ., 41, 352-361(2006).

    [8] S. Tadigadapa, K. Mateti. Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol., 20, 092001(2009).

    [9] C. H. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, H. K. Rockstad. Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution. J. Microelectromech. Syst., 7, 235-244(2009).

    [10] H. Nakstad, J. T. Kringlebotn. Oil and gas applications: probing oil fields. Nat. Photonics, 2, 147-149(2008).

    [11] C. Han, C. Li, Y. Zhao, B. Li. High-stability quartz resonant accelerometer with micro-leverages. J. Microelectromech., 30, 184-192(2021).

    [12] U. Krishnamoorthy, R. H. Olsen, G. R. Bogart, M. S. Baker, D. W. Carr, T. P. Swiler, P. J. Clews. In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sens. Actuators A, 145–146, 283-290(2008).

    [13] K. Zandi, B. Wong, Z. Jing, R. V. Kruzelecky, Y. A. Peter. In-plane silicon-on-insulator optical MEMS accelerometer using waveguide Fabry-Perot microcavity with silicon/air Bragg mirrors. IEEE International Conference on Micro Electro Mechanical Systems, 839-842(2010).

    [14] A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter. A high-resolution microchip optomechanical accelerometer. Nat. Photonics, 6, 768-772(2012).

    [15] F. F. Qin, G. Y. Zhu, J. B. Yang, L. Wei, Q. N. Cui, Y. J. Wang. Unidirectional single-mode lasing realization and temperature-induced mode switching in asymmetric GaN coupled cavities. Nanoscale, 14, 1921-1928(2022).

    [16] F. Qin, Q. Zhu, Y. Zhang, R. Wang, X. Wang, M. Zhou, Y. Yang. Effect of substrates on lasing properties of GAN transferable membranes. Opt. Mater., 122, 111663(2021).

    [17] F. Qin, Y. Sun, Y. Yang, X. Li, X. Wang, J. Lu, Y. Wang, G. Zhu. Optically pumped wavelength-tunable lasing from a GaN beam cavity with integrated Joule heater pivoted on Si. Chin. Phys. B, 32, 054210(2023).

    [18] V. Cimalla, J. Pezoldt, O. Ambacher. Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications. J. Phys. D, 40, S19(2007).

    [19] A. Dadgar, C. Hums, A. Diez, J. Blaesing, A. Krost. Growth of blue GaN LED structures on 150-mm Si(111). J. Crystal Growth, 297, 279-282(2006).

    [20] Y. Sun, K. Zhou, M. Feng, Z. Li, Y. Zhou, Q. Sun, J. Liu, L. Zhang, D. Li, X. Sun. Room-temperature continuous-wave electrically pumped InGaN/GaN quantum well blue laser diode directly grown on Si. Light Sci. Appl., 7, 13(2018).

    [21] T. Yamada, Y. Ando, H. Watanabe, Y. Furusawa, A. Tanaka, M. Deki, S. Nitta, Y. Honda, J. Suda, H. Amano. Fabrication of GaN cantilever on GaN substrate by photo-electrochemical etching. Appl. Phys. Express, 14, 036505(2021).

    [22] M. Rais-Zadeh, V. J. Gokhale, A. Ansari, M. Faucher, D. Théron, Y. Cordier, L. Buchaillot. Gallium nitride as an electromechanical material. J. Microelectromechan. Syst., 23, 1252-1271(2014).

    [23] J. Dong, B. Wang, X. Zou, W. Zhao, C. He, L. He, Q. Wang, Z. Chen, S. Li, K. Zhang. Centimeter-long III-nitride nanowires and continuous-wave pumped lasing enabled by graphically epitaxial lift-off. Nano Energy, 78, 105404(2020).

    [24] Y. Peng, J. Lu, D. Peng, W. Ma, F. Li, Q. Chen, X. Wang, J. Sun, H. Liu, C. Pan. Dynamically modulated GaN whispering gallery lasing mode for strain sensor. Adv. Funct. Mater., 29, 1905051(2019).

    [25] T. Liu, D. Li, H. Hu, X. Huang, Z. Zhao, W. Sha, C. Jiang, C. Du, M. Liu, X. Pu, B. Ma, W. Hu, Z. L. Wang. Piezo-phototronic effect in InGaN/GaN semi-floating micro-disk LED arrays. Nano Energy, 67, 104218(2020).

    [26] G. Zhu, J. Li, N. Zhang, X. Li, J. Dai, Q. Cui, Q. Song, C. Xu, Y. Wang. Whispering-gallery mode lasing in a floating GaN microdisk with a vertical slit. Sci. Rep., 10, 253(2020).

    [27] H. Chen, K. Guo, J. Yin, S. He, G. Qiu, M. Zhang, Z. Xu, G. Zhu, J. Yang, P. Yan. Photoluminescence-induced four-wave mixing generation in a monolayer-MoS2-cladded GaN microdisk resonator. Laser Photonics Rev., 15, 2000459(2021).

    [28] H. Kim, S. Z. Uddin, N. Higashitarumizu, E. Rabani, A. Javey. Inhibited nonradiative decay at all exciton densities in monolayer semiconductors. Science, 373, 448-452(2021).

    [29] G. Wang, X. Tao, J. Liu, F. Jiang. Temperature-dependent electroluminescence from InGaN/GaN green light-emitting diodes on silicon with different quantum-well structures. Semicond. Sci. Technol., 30, 015018(2014).

    [30] X. Li, Z. Shi, G. Zhu, M. Zhang, H. Zhu, Y. Wang. High efficiency membrane light emitting diode fabricated by back wafer thinning technique. Appl. Phys. Lett., 105, 031109(2014).

    [31] X. Li, Y. Wu, J. Yuan, S. Ni, C. Qin, Y. Jiang, J. Li, Y. Wang. High-speed light signal transmitters for optical communication based on ultraviolet radiation. Appl. Sci., 10, 693(2020).

    [32] C. Zhu, L. Feng, C. Wang, H. Cong, G. Zhang, Z. Yang, Z. Chen. Negative capacitance in light-emitting devices. Solid-State Electron., 53, 324-328(2009).

    [33] N. Nanhui, W. Huaibing, L. Jianping, L. Naixin, X. Yanhui, H. Jun, D. Jun, S. Guangdi. Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction. Solid-State Electron., 51, 860-864(2007).

    [34] J. Bai, B. Xu, F. Guzman, K. Xing, Y. Gong, Y. Hou, T. Wang. (11-22) semipolar InGaN emitters from green to amber on overgrown GaN on micro-rod templates. Appl. Phys. Lett., 107, 261103(2015).

    [35] H. Li, M. Khoury, B. Bonef, A. I. Alhassan, A. J. Mughal, E. Azimah, M. E. Samsudin, P. De Mierry, S. Nakamura, J. S. Speck. Efficient semipolar (11–22) 550 nm yellow/green ingan light-emitting diodes on low defect density (11–22) GaN/sapphire templates. ACS Appl. Mater. Interfaces, 9, 36417-36422(2017).

    [36] J. Zhao, X. Zhang, Z. Wu, L. Feng, L. Cheng, X. Zeng, G. Hu, Y. Cui. Enhanced performance of GaN-based light-emitting diodes with composite electron blocking layer. Optik, 136, 558-563(2017).

    [37] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. Denbaars. Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures. Appl. Phys. Lett., 73, 2006-2008(1998).

    [38] A. Barker, M. Ilegems. Infrared lattice vibrations and free-electron dispersion in GaN. Phys. Rev. B, 7, 743-750(1973).

    [39] I. Yonenaga. Hardness, yield strength, and dislocation velocity in elemental and compound semiconductors. Mater. Trans., 46, 1979-1985(2005).

    [40] S. Jain, M. Willander, J. Narayan, R. V. Overstraeten. III–nitrides: growth, characterization, and properties. J. Appl. Phys., 87, 965-1006(2000).

    [41] A. Wright. Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN. J. Appl. Phys., 82, 2833-2839(1997).

    [42] I. Yonenaga, K. Motoki. Yield strength and dislocation mobility in plastically deformed bulk single-crystal GaN. J. Appl. Phys., 90, 6539-6541(2001).

    Gangyi Zhu, Xin Ji, Zhenfu Zhang, Xingcan Yan, Ying Yang, Feifei Qin, Xin Li, Jiagui Wu, Xiaojuan Sun, Junbo Yang, Yongjin Wang. Electrically pumped optomechanical beam GaN-LED accelerometer based on the quantum-confined Stark effect[J]. Photonics Research, 2023, 11(9): 1583
    Download Citation