• Chinese Journal of Lasers
  • Vol. 48, Issue 13, 1300001 (2021)
Ningning Dong1, Qianghu Liu2, and Jun Wang1、*
Author Affiliations
  • 1Laboratory of Micro⁃Nano Optoelectronic Materials and Devices, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Science and Technology on Electro⁃Optical Information Security Control Laboratory, Academy of Opto⁃Electronics, China Electronics Technology Group Corporation, Tianjin 300308, China
  • show less
    DOI: 10.3788/CJL202148.1300001 Cite this Article Set citation alerts
    Ningning Dong, Qianghu Liu, Jun Wang. Research Progress of Two-Dimensional Nonlinear Optical Limiting Materials[J]. Chinese Journal of Lasers, 2021, 48(13): 1300001 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical radiation in ruby[J]. Nature, 187, 493-494(1960).

    [2] Ning Y Q, Chen Y Y, Zhang J et al. Brief review of development and techniques for high power semiconductor lasers[J]. Acta Optica Sinica, 41, 0114001(2021).

    [3] Chen L H, Yang G W, Liu Y X. Development of semiconductor lasers[J]. Chinese Journal of Lasers, 47, 0500001(2020).

    [4] Wang T, Zhang J, Zhang N et al. Research progress in preparation of single crystal fiber and fiberlasers[J]. Laser & Optoelectronics Progress, 56, 170611(2019).

    [5] Spangler C W. Recent development in the design of organic materials for optical power limiting[J]. Journal of Materials Chemistry, 9, 2013-2020(1999). http://pubs.rsc.org/en/content/articlelanding/1999/jm/a902802a

    [6] Tutt L W, Boggess T F. Areview of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials[J]. Progress in Quantum Electronics, 17, 299-338(1993). http://www.sciencedirect.com/science/article/pii/007967279390004S

    [7] Leite R C C, Porto S P S, Damen T C. The thermal lens effect as a power-limiting device[J]. Applied Physics Letters, 10, 100-101(1967). http://scitation.aip.org/content/aip/journal/apl/10/3/10.1063/1.1754849

    [8] Chen Y, Bai T, Dong N N et al. Graphene and its derivatives for laser protection[J]. Progress in Materials Science, 84, 118-157(2016). http://www.sciencedirect.com/science/article/pii/S0079642516300603

    [9] Wang J, Blau W J. Inorganic and hybrid nanostructures for optical limiting[J]. Journal of Optics A: Pure and Applied Optics, 11, 024001(2009). http://www.ingentaconnect.com/content/iop/jopta/2009/00000011/00000002/art024001

    [10] O’Flaherty S M, Hold S V, Cook M J et al. Molecular engineering of peripherally and axially modified phthalocyanines for optical limiting and nonlinear optics[J]. Advanced Materials, 15, 19-32(2003). http://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.200390002

    [11] Bhawalkar J D, He G S, Prasad P N. Nonlinear multiphoton processes in organic and polymeric materials[J]. Reports on Progress in Physics, 59, 1041-1070(1996). http://www.nrcresearchpress.com/servlet/linkout?suffix=rg8/ref8a&dbid=16&doi=10.1139%2FV09-139&key=10.1088%2F0034-4885%2F59%2F9%2F001

    [12] He G S, Tan L S, Zheng Q D et al. Multiphoton absorbing materials: molecular designs, characterizations, and applications[J]. Chemical Reviews, 108, 1245-1330(2008). http://onlinelibrary.wiley.com/doi/10.1002/chin.200824270

    [13] Boggess T, Bohnert K, Mansour K et al. Simultaneous measurement of the two-photon coefficient and free-carrier cross section above the bandgap of crystalline silicon[J]. IEEE Journal of Quantum Electronics, 22, 360-368(1986). http://ieeexplore.ieee.org/document/1072964

    [14] Sheik-Bahae M, Hagan D J, van Stryland E W. Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption[J]. Physical Review Letters, 65, 96-99(1990).

    [15] François L, Mostafavi M, Belloni J et al. Optical limitation induced by gold clusters. 1. size effect[J]. The Journal of Physical Chemistry B, 104, 6133-6137(2000). http://pubs.acs.org/doi/abs/10.1021/jp9944482

    [16] Novoselov K S, Geim A K, Morozov S V et al. Electric field effect in atomically thin carbon films[J]. Science, 306, 666-669(2004).

    [17] Nair R R, Blake P, Grigorenko A N et al. Fine structure constant defines visual transparency of graphene[J]. Science, 320, 1308(2008).

    [18] Bolotin K I, Sikes K J, Jiang Z et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 146, 351-355(2008).

    [19] Kim K S, Zhao Y, Jang H et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 457, 706-710(2009).

    [20] Balandin A A, Ghosh S, Bao W Z et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 8, 902-907(2008). http://pubs.acs.org/doi/10.1021/nl0731872

    [21] Lee C, Wei X, Kysar J W et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 321, 385-388(2008).

    [22] Wang J, Hernandez Y, Lotya M et al. Broadband nonlinear optical response of graphene dispersions[J]. Advanced Materials, 21, 2430-2435(2009).

    [23] Cheng X, Dong N N, Li B et al. Controllable broadband nonlinear optical response of graphene dispersions by tuning vacuum pressure[J]. Optics Express, 21, 16486-16493(2013).

    [24] Sun Z Y, Dong N N, Xie K P et al. Nanostructured few-layer graphene with superior optical limiting properties fabricated by a catalytic steam etchingprocess[J]. The Journal of Physical Chemistry C, 117, 11811-11817(2013). http://pubs.acs.org/doi/10.1021/jp401736n

    [25] Feng M, Zhan H B, Chen Y. Nonlinear optical and optical limiting properties of graphene families[J]. Applied Physics Letters, 96, 033107(2010). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5397155

    [26] Zhu J H, Li Y X, Chen Y et al. Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting[J]. Carbon, 49, 1900-1905(2011). http://www.sciencedirect.com/science/article/pii/S0008622311000303

    [27] Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J et al. 2D materials: to graphene and beyond[J]. Nanoscale, 3, 20-30(2011). http://europepmc.org/abstract/MED/20844797

    [28] Wang Q H, Kalantar-Zadeh K, Kis A et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 7, 699-712(2012). http://www.nature.com/nnano/journal/v7/n11/full/nnano.2012.193.html

    [29] Radisavljevic B, Radenovic A, Brivio J et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 6, 147-150(2011).

    [30] Mak K F, Lee C, Hone J et al. Atomically Thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 105, 136805(2010). http://europepmc.org/abstract/med/21230799

    [31] Splendiani A, Sun L, Zhang Y B et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 10, 1271-1275(2010). http://www.ncbi.nlm.nih.gov/pubmed/20229981

    [32] Loh K P, Zhang H, Chen W Z et al. Templated deposition of MoS2 nanotubules using single source precursor and studies of their optical limiting properties[J]. The Journal of Physical Chemistry B, 110, 1235-1239(2006). http://pubs.acs.org/doi/abs/10.1021/jp055959t

    [33] Wang K, Feng Y, Chang C et al. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors[J]. Nanoscale, 6, 10530-10535(2014).

    [34] Dong N, Li Y, Feng Y et al. Optical limiting and theoretical modelling of layered transition metal dichalcogenide nanosheets[J]. Scientific Reports, 5, 14646(2015).

    [35] Dong N N, Li Y X, Zhang S F et al. Optically induced transparency and extinction in dispersed MoS2, MoSe2, and graphene nanosheets[J]. Advanced Optical Materials, 5, 1700543(2017).

    [36] Li Y X, Dong N N, Zhang S F et al. Giant two-photon absorption in monolayer MoS2[J]. Laser & Photonics Reviews, 9, 427-434(2015).

    [37] Zhang S F, Dong N N, McEvoy N et al. Direct observation of degenerate two-photon absorption and its saturation in WS2 and MoS2 monolayer and few-layer films[J]. ACS Nano, 9, 7142-7150(2015).

    [38] Dong N N, Li Y X, Zhang S F et al. Saturation of two-photon absorption in layered transition metal dichalcogenides:experiment and theory[J]. ACS Photonics, 5, 1558-1565(2018). http://pubs.acs.org/doi/10.1021/acsphotonics.8b00010

    [39] Dong N N, Li Y X, Zhang S F et al. Dispersion of nonlinear refractive index in layered WS2 and WSe2 semiconductor films induced by two-photon absorption[J]. Optics Letters, 41, 3936-3939(2016).

    [40] Tao L L, Long H, Zhou B et al. Preparation and characterization of few-layer MoS2 nanosheets and their good nonlinear optical responses in the PMMA matrix[J]. Nanoscale, 6, 9713-9719(2014).

    [41] Cheng H, Dong N, Bai T et al. Covalent modification of MoS2 with Poly (N-vinylcarbazole) for solid-state broadband optical limiters[J]. Chemistry, 22, 4500-4507(2016). http://dx.doi.org/10.1002/chem.201505017

    [42] Shi M K, Dong N N, He N et al. MoS2 nanosheets covalently functionalized with polyacrylonitrile: synthesis and broadband laser protection performance[J]. Journal of Materials Chemistry C, 5, 11920-11926(2017). http://pubs.rsc.org/en/content/articlelanding/2017/tc/c7tc03900j

    [43] Li L K, Yu Y J, Ye G J et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 9, 372-377(2014). http://pubs.acs.org/servlet/linkout?suffix=ref77/cit77&dbid=8&doi=10.1021%2Facsnano.5b05040&key=24584274

    [44] Takao Y, Asahina H, Morita A. Electronic structure of black phosphorus in tight binding approach[J]. Journal of the Physical Society of Japan, 50, 3362-3369(1981).

    [45] Woomer A H, Farnsworth T W, Hu J et al. Phosphorene:synthesis, scale-up, and quantitative optical spectroscopy[J]. ACS Nano, 9, 8869-8884(2015).

    [46] Cai Y Q, Ke Q Q, Zhang G et al. Giant phononic anisotropy and unusual anharmonicity of phosphorene:interlayer coupling and strain engineering[J]. Advanced Functional Materials, 25, 2230-2236(2015). http://onlinelibrary.wiley.com/doi/10.1002/adfm.201570104/pdf

    [47] Ribeiro H B, Pimenta M A, de Matos C J S et al. Unusual angular dependence of the Raman response in black phosphorus[J]. ACS Nano, 9, 4270-4276(2015).

    [48] Zhang F, Wu Z X, Wang Z P et al. Strong optical limiting behavior discovered in black phosphorus[J]. RSC Advances, 6, 20027-20033(2016).

    [49] Huang J W, Dong N N, Zhang S F et al. Nonlinear absorption induced transparency and optical limiting of black phosphorus nanosheets[J]. ACS Photonics, 4, 3063-3070(2017). http://pubs.acs.org/doi/10.1021/acsphotonics.7b00598

    [50] Zheng X, Chen R, Shi G et al. Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements[J]. Optics Letters, 40, 3480-3483(2015).

    [51] Shi M K, Huang S T, Dong N N et al. Donor-acceptor type blends composed of black phosphorus and C60 for solid-state optical limiters[J]. Chemical Communications, 54, 366-369(2018).

    Ningning Dong, Qianghu Liu, Jun Wang. Research Progress of Two-Dimensional Nonlinear Optical Limiting Materials[J]. Chinese Journal of Lasers, 2021, 48(13): 1300001
    Download Citation