• Infrared and Laser Engineering
  • Vol. 49, Issue 12, 20201073 (2020)
Yajun Wang1, Li Gao2, Xiaoli Zhang2, and Yaohui Zheng1、*
Author Affiliations
  • 1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China
  • 2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan, 030006, China
  • show less
    DOI: 10.3788/IRLA20201073 Cite this Article
    Yajun Wang, Li Gao, Xiaoli Zhang, Yaohui Zheng. Recent development of low noise laser for precision measurement (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201073 Copy Citation Text show less
    References

    [1] B P Abbott, R Abbott, T D Abbott. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 116, 061102(2016).

    [2] Gregory M Harry, LIGO Scientific Collaboration the. Advanced LIGO: the next generation of gravitational wave detectors. Class. Quantum Grav., 27, 084006(2010).

    [3] M T Nery, L Stefan, Danilishin. Fundamental limits of laser power stabilization via a radiation pressure transfer scheme. Opt. Lett., 45, 3969-3972(2020).

    [4] Z Y Song, G B Yao, L L Zhang. Influence factors of phase noise of single frequency fiber laser. Infrared and Laser Engineering, 46, 0305005(2017).

    [5] W Shi, S J Fu, Q Fang. Single-frequency fiber laser based on rare-earth-doped silica fiber. Infrared and Laser Engineering, 45, 1003001(2016).

    [6] X L Bai, Q Sheng, H W Zhang. Influence of seed power and gain fiber temperature on output linewidth in single-frequency EYDFA. Infrared and Laser Engineering, 47, 1005004(2018).

    [7] H W Zhang, Y Cao, W Shi. Experimental investigation on spectral linewidth and relative intensity noise of high-power single-frequency polarization-maintained Thulium-doped fiber amplifier. IEEE Photonics Journal, 8, 1-9(2016).

    [8] P Q Zhang, T J Du, Y J Shi. Single-frequency laser based on single-pass QPM frequency doubling of Tm-doped fiber MOPA. Infrared and Laser Engineering, 49, 20200112(2020).

    [9] L M Zhang, C P Yan, J J Feng. 180 W single frequency all fiber laser. Infrared and Laser Engineering, 47, 1105001(2008).

    [10] F Thies, N Bode, P Oppermann. Nd:YVO4 high-power master oscillator power amplifier laser system for second-generation gravitational wave detectors. Opt. Lett., 44, 719-722(2019).

    [11] Y R Guo, H D Lu, W N Peng. Intensity noise suppression of a high-power single-frequency CW laser by controlling the stimulated emission rate. Opt. Lett., 44, 6033-6036(2019).

    [12] Y R Guo, M Z Xu, W N Peng. Realization of a 101 W single-frequency continuous wave all-solid-state 1064 nm laser by means of mode self-reproduction. Opt. Lett., 43, 6017-6020(2018).

    [13] X L Wang, P Zhou, H Xiao. 310 W single-frequency all-fiber laser in master oscillator power amplification configuration. Laser Phys. Lett., 9, 591-595(2012).

    [14] C Dixneuf, G Guiraud, Y V Bardin. Ultra-low intensity noise, all fiber 365 W linearly polarized single frequency laser at 1064 nm. Opt. Express, 28, 10960-10969(2020).

    [15] W C Lai, P F Ma, W Liu. 550-W Single-Frequency All-Fiber Amplifier with Near-Diffraction-Limited Beam Quality. Chinese Journal of Lasers, 47, 1-3(2020).

    [16] B Gouhier, G Guiraud, S Rota-Rodrigo. 25 W single-frequency, low noise fiber MOPA at 1120 nm. Opt. Lett., 43, 308-311(2018).

    [17] J Zhao, G Guiraud, C Pierre. High-power all-fiber ultra-low noise laser. Applied Physics B, 124, 1-7(2018).

    [18] C S Yang, S H Xu, D Chen. 52 W kHz-linewidth low-noise linearlypolarized all-fiber single-frequency MOPA laser. J. Opt., 18, 1-5(2016).

    [19] Yang C S, Guan X C, Xu S H, et al. 210W kHzlinewidth linearlypolarized allfiber singlefrequency MOPA laser[C]. CLEO_AT, 2018, JTu2A. 164.

    [20] Q L Zhao, S H Xu, K J Zhou. Broad-bandwidth near-shot-noise-limited intensity noise suppression of a single-frequency fiber laser. Opt. Lett., 41, 1333-1335(2016).

    [21] S P Shi, W H Yang, Y H Zheng. Noise analysis of single-frequency laser source in preparation of squeezed-state light field. Chinese Journal of Lasers, 46, 62-67(2019).

    [22] A E Amili, M Alouini. Noise reduction in solid-state lasers using a SHG-based buffer reservoir. Opt. Lett., 40, 1149-1152(2015).

    [23] C M Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D., 23, 1693-1708(1981).

    [24] H Vahlbruch, D Wilken, M Mehmet. Laser power stabilization beyond the shot noise limit using squeezed light. Phys. Rev. Lett., 121, 173601(2018).

    [25] M Tse, H C Yu, N Kijbunchoo. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett., 123, 231107(2019).

    [26] F Acernese, M Agathos, L Aiello. Increasing the astrophysical reach of the advanced virgo detector via the application of squeezed vacuum states of light. Phys. Rev. Lett., 123, 2311081(2019).

    [27] Y H Zheng, H D Lu, F Q Li. Four watt long-term stable intracavity frequency-doubling Nd:YVO4 laser of single-frequency operation pumped by a fiber-coupled laser diode. Appl. Opt., 46, 5336-5339(2007).

    [28] Y H Zheng, F Q Li, Y J Wang. , High-stability single-frequency green laser with a wedge Nd:YVO4 as a polarizing beam splitter. Opt. Commun., 283, 309-312(2010).

    [29] Y J Wang, W H Yang, H J Zhou. Temperature dependence of the fractional thermal load of Nd:YVO4 at 1064 nm lasing and its influence on laser performance. Opt. Express, 21, 18068-18078(2013).

    [30] Y J Wang, Y H Zheng, Z Shi. High-power single-frequency Nd:YVO4 green laser by self-compensation of astigmatisms. Laser Phys. Lett., 9, 1-5(2012).

    [31] Y J Wang, Y H Zheng, C D Xie. High-power low-noise Nd:YAP/LBO laser with dual wavelength outputs. IEEE Journal of Quantum Electronics, 47, 1006-1013(2011).

    [32] Y H Zheng, Y J Wang, C D Xie. Single-frequency Nd:YVO4 laser at 671 nm with high-output power of 2.8 W. IEEE Journal of Quantum Electronics, 48, 67-72(2012).

    [33] C C Harb, T C Ralph, E H Huntington. Intensity-noise dependence of Nd:YAG lasers on their diode-laser pump source. J. Opt. Soc. Am. B, 14, 2752-3260(1997).

    [34] J Zhang, C D Xie, K C Peng. Electronic feedback control of the intensity noise of a single-frequency intracavity-doubled laser. J. Opt. Soc. Am. B, 19, 1910-1916(2002).

    [35] W H Yang, Y J Wang, Z X Li. Compactand low-noise intracavity frequency-doubled single-frequency Nd:YAP/KTP laser. Chinese Journal of Lasers, 41, 0502002(2014).

    [36] P Kwee, B and Danzmann K Willke. New concepts and results in laser power stabilization. Applied Physics B, 102, 515-522(2011).

    [37] Z X Li, W G Ma, W H Yang. Reduction of zero baseline drift of the Pound–Drever–Hall error signal with a wedged electro-optical crystal for squeezed state generation. Opt. Lett., 41, 3331-3334(2016).

    [38] H Y Zhang, J R Wang, Q H Li. Experimental realization of high quality factor resonance detector. Journal of Quantum Optics, 25, 456-462(2019).

    [39] C Y Chen, S P Shi, Zheng Y H and. Low-noise, transformer-coupled resonant photodetector for squeezed state generation. Rev. Sci. Instrum., 88, 103101(2017).

    [40] H J Zhou, W H Yang, Z X Li. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement. Rev. Sci. Instrum., 85, 013111(2014).

    [41] X L Jin, J Su, Y H Zheng. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes. Opt. Express, 23, 23859-23866(2015).

    [42] J Rollins, D Ottaway, M Zucker. Solid-state laser intensity stabilization at the 10-8 level. Opt. Lett., 29, 1876-1878(2004).

    [43] F Seifert, P Kwee, M Heurs. Laser power stabilization for second-generation gravitational wave detectors. Opt. Lett., 31, 2000-2002(2006).

    [44] P Kwee, B Willke, Danzmann K and. Shot-noise-limited laser power stabilization with a high-power photodiode array. Opt. Lett., 34, 2912-2914(2009).

    [45] J Junker, P Oppermann, Willke B and. Shot-noise-limited laser power stabilization for the AEI 10 m prototype interferometer. Opt. Lett., 42, 755-758(2017).

    [46] P Kwee, B Willke, Danzmann K and. Optical ac coupling to overcome limitations in the detection of optical power fluctuations. Opt. Lett., 33, 1509-1511(2008).

    [47] P Kwee, B Willke, Danzmann K and. Laser power noise detection at the quantum-noise limit of 32A photocurrent. Opt. Lett., 36, 3563-3565(2011).

    [48] S Kaufer, Willke B and. Optical AC coupling power stabilization at frequencies close to the gravitational wave detection band. Opt. Lett., 44, 1916-1919(2019).

    [49] Steinlechner S, Quantum metrology with squeezed entangled light f the detection of gravitational waves[D]. Germany: Leibniz Universität Hannover, 2013.

    [50] J Bauchrowitz, Tand Schnabel R Westphal. A graphical description of optical parametric generation of squeezed states of light. Am. J. Phys., 81, 767-771(2013).

    [51] R Schnabel. Squeezed states of light and their applications in laser interferometers. Physics Reports, 684, 1-51(2017).

    [52] S S Y Chua, B J J Slagmolen, D A Shaddock. Quantum squeezed light in gravitational-wave detectors. Class. Quantum Grav., 31, 183001(2014).

    [53] L A Wu, H J Kimble, J L Hall. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett., 57, 2520-2523(1986).

    [54] Y Yamamoto, N Imoto, Machida S and. Amplitude squeezing in a semiconductor laser using quantum nondemolition measurement and negative feedback. Phys. Rev. A, 33, 3243-3261(1986).

    [55] A Heidmann, R J Horowicz, S Reynaud. Observation of quantum noise reduction on twin laser beams. Phys. Rev. Lett., 59, 2555-2557(1987).

    [56] Z Y Ou, S F Pereira, H J Kimble. Realization of the einstein-podolsky-rosen paradox for continuous variables. Phys. Rev. Lett., 68, 3663-3666(1992).

    [57] K Schneider, M Lang, J Mlynek. Generation of strongly squeezed continuous-wave light at 1064 nm. Opt. Express, 2, 59-64(1998).

    [58] K McKenzie, N Grosse, W P Bowen. Squeezing in the audio gravitational-wave detection band. Phys. Rev. Lett., 93, 161105(2004).

    [59] H Vahlbruch, S Chelkowski, B Hage. Coherent control of vacuum squeezing in the gravitational-wave detection band. Phys. Rev. Lett., 97, 011101(2006).

    [60] H Vahlbruch, S Chelkowski, K Danzmann. Quantum engineering of squeezed states for quantum communication and metrology. New J. Phys., 9, 12505-12508(2007).

    [61] Y Takeno, M Yukawa, H Yonezawa. Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. Opt. Express, 15, 4321-4327(2007).

    [62] H Vahlbruch, M Mehmet, S Chelkowski. Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett., 100, 033602(2008).

    [63] T Eberle, S Steinlechner, J Bauchrowitz. Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection. Phys. Rev. Lett., 104, 2511021(2010).

    [64] H Vahlbruch, A Khalaidovski, N Lastzka. The GEO 600 squeezed light source. Class. Quantum Grav., 27, 084027(2010).

    [65] J Abadie, B Abbott, R Abbott. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Phys., 7, 962-965(2011).

    [66] M S Stefszky, C M Mow-Lowry, S S Y Chua. Balanced homodyne detection of optical quantum states at audio-band frequencies and below. Class. Quantum Grav., 29, 145015(2012).

    [67] T Eberle, V Handchen, R Schnabel. Stable control of 10 dB two-mode squeezed vacuum states of light. Opt. Express, 21, 11546-11553(2013).

    [68] H Vahlbruch, M Mehmet, K Danzmann. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency. Phys. Rev. Lett., 117, 110801(2016).

    [69] K C Peng, Q Pan, H Wang. Generation of two-mode quadrature-phase squeezing and intensity-difference squeezing from a cw-NOPO. Appl. Phys. B, 66, 755-758(1998).

    [70] H Wang, Y Zhang, Q Pan. Experimental realization of a quantum measurement for intensity difference fluctuation using a beam splitter. Phys. Rev. Lett., 82, 1414-1417(1999).

    [71] Y Wang, H Shen, X L Jin. Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier. Opt. Express, 18, 6149-6155(2010).

    [72] W H Yang, S P Shi, Y J Wang. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations. Opt. Lett., 42, 4553-4556(2017).

    [73] W H Yang, X L Jin, X D Yu. Dependence of measured audio-band squeezing level on local oscillator intensity noise. Opt. Express, 25, 24262-24271(2017).

    [74] S P Shi, Y J Wang, W H Yang. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption.. Opt. Lett., 43, 5411-5414(2018).

    [75] W H Zhang, J R Wang, Y H Zheng. Optimization of the squeezing factor by temperature-dependent phase shift compensation in a doubly resonant optical parametric oscillator. Appl. Phys. Lett., 115, 171103(2019).

    [76] X C Sun, Y J Wang, L Tian. Detection of 13.8 dB squeezed vacuum states by optimizing the interference efficiency and gain of balanced homodyne detection. Chinese Opt. Lett., 17, 072701(2019).

    [77] S P Shi, Y J Wang, L Tian. Observation of a comb of squeezed states with a strong squeezing factor by a bichromatic local oscillator. Opt. Lett., 45, 2419-2422(2020).

    [78] S P Shi, L Tian, Y J Wang. Demonstration of channel multiplexing quantum communication exploiting entangled sideband modes. Phys. Rev. Lett., 125, 070502(2020).

    CLP Journals

    [1] Can Li, Pu Zhou, Pengfei Ma, Man Jiang, Yue Tao, Liu Liu. Research progress of single-frequency fiber laser technology (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220237

    [2] Weijie Wang, Fan Li, Jianbo Li, Mingjian Ju, Li'ang Zheng, Yuhang Tian, Wangbao Yin, Long Tian, Yaohui Zheng. Research on low noise balanced homodyne detection system for space-based gravitational wave detection (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20220300

    Yajun Wang, Li Gao, Xiaoli Zhang, Yaohui Zheng. Recent development of low noise laser for precision measurement (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201073
    Download Citation