• Acta Optica Sinica
  • Vol. 36, Issue 3, 317002 (2016)
Jiang Jin*, Jiao Xuejun, Pan Jinjin, Zhang Zhen, Cao Yong, and Xiao Yi
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201636.0317002 Cite this Article Set citation alerts
    Jiang Jin, Jiao Xuejun, Pan Jinjin, Zhang Zhen, Cao Yong, Xiao Yi. Emotional State Recognition Based on Functional Near-Infrared Spectroscopy[J]. Acta Optica Sinica, 2016, 36(3): 317002 Copy Citation Text show less
    References

    [1] Tuscan L A, Herbert J D, Forman E M, et al.. Exploring frontal asymmetry using functional near-infrared spectroscopy: A preliminary study of the effects of social anxiety during interaction and performance tasks[J]. Brain Imaging & Behavior, 2013, 7(2): 140-153.

    [2] Boas D A, Elwell C E, Ferrari M, et al.. Twenty years of functional near-infrared spectroscopy: Introduction for the special issue[J]. NeuroImage, 2014, 85(2): 1-5.

    [3] Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application[J]. NeuroImage, 2012, 63(2): 921-935.

    [4] Doi H, Nishitani S, Shinohara K. NIRS as a tool for assaying emotional function in the prefrontal cortex[J]. Frontiers in Human Neuroscience, 2013, 7(1): 56-67.

    [5] Davidson R J, Putnam K M, Larson C L. Dysfunction in the neural circuitry of emotion regulation — a possible prelude to violence[J]. Science, 2000, 289(5479): 591-594.

    [6] Balconi M, Lucchiari C. Consciousness and arousal effects on emotional face processing as revealed by brain oscillations. A gamma band analysis[J]. International Journal of Psychophysiology, 2008, 67(1): 41-46.

    [7] Balconi M, Grippa E, Vanutelli M E. What hemodynamic (fNIRS), electrophysiological (EEG) and autonomic integrated measures can tell us about emotional processing[J]. Brain & Cognition, 2015, 95: 67-76.

    [8] Xiong Yang, Si Minzhen, Gao Fei, et al.. Study on cervical cancer oxyhemoglobin using near-infrared surface-enhanced Raman spectroscopy[J]. Chinese J Lasers, 2015, 42(1): 0115001.

    [9] Zhang Yong, Chen Bin, Li Dong. A three-dimensional geometric Monte Carlo method for simulation of light propagation in biological tissues[J]. Chinese J Lasers, 2015, 42(1): 0104003.

    [10] Wu Chunyang, Lu Qipeng, Ding Haiquan, et al.. Noninvasive blood glucose sensing with near-infrared spectroscopy based on interstitial fluid[J]. Acta Optica Sinica, 2013, 33(11): 1117001.

    [11] Hoshi Y, Huang J, Kohri S, et al.. Recognition of human emotions from cerebral blood flow changes in the frontal region: A study with event-related near-infrared spectroscopy[J]. Journal of Neuroimaging, 2009, 21(2): 94-101.

    [12] Pan Jinjin, Jiao Xuejun, Jiao Dian, et al.. Study on variation in cortex oxygen with task features using functional near-infrared spectroscopy [J]. Acta Optica Sinica, 2015, 35(8): 0817001.

    [13] Dieler A C, Plichta M M, Sler T, et al.. Suppression of emotional words in the Think/No-Think paradigm investigated with functional near-infrared spectroscopy[J]. International Journal of Psychophysiology, 2010, 78(2): 129-135.

    [14] Sourina O, Wang Q, Liu Y, et al.. A real-time fractal-based brain state recognition from EEG and its applications[C]. Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, Rome, 2011: 82-90.

    [15] Lischke A, Berger C, Prehn K, et al.. Intranasal oxytocin enhances emotion recognition from dynamic facial expressions and leaves eyegaze unaffected[J]. Psychoneuroendocrinology, 2012, 37(4): 475-481.

    [16] Khalili Z, Moradi M H. Emotion recognition system using brain and peripheral signals: Using correlation dimension to improve the results of EEG[C]. IEEE International Joint Conference on Neural Networks, 2009: 1571-1575.

    [17] Hoshi Y, Huang J, Kohri S, et al.. Recognition of human emotions from cerebral blood flow changes in the frontal region: A study with event-related near-infrared spectroscopy[J]. Journal of Neuroimaging, 2009, 21(2): 94-101.

    [18] Liu Y, Sourina O, Nguyen M K. Real-time EEG-based emotion recognition and its applications[M]. //Transactions on Computational Science XII, 2011, 6670: 256-277.

    [19] Lang P J, Bradley M M, Cuthbert B N. International affective picture system (IAPS): Affective ratings of pictures and instruction manual [R]. University of Florida, 2008, Technical Report A-8.

    [20] Bradley M M, Lang P J. Measuring emotion: The self-assessment manikin and the semantic differential[J]. Journal of Behavior Therapy & Experimental Psychiatry, 1994, 25(1): 49-59.

    [21] Hu T Y, Xie X, Li J. Negative or positive The effect of emotion and mood on risky driving[J]. Transportation Research Part F: Traffic Psychology & Behaviour, 2013, 16: 29-40.

    [22] Jeon M, Walker B N, Yim J B. Effects of specific emotions on subjective judgment, driving performance, and perceived workload[J]. Transportation Research Part F: Traffic Psychology & Behaviour, 2014, 24: 197-209.

    [23] Kirilina E, Jelzow A, Heine A, et al.. The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy [J]. NeuroImage, 2012, 61(1): 70-81.

    [24] Pan Jinjin, Jiao Xuejun, Jiang Jin, et al.. Mental workload assessment based on functional near-infrared spectroscopy[J]. Acta Optica Sinica, 2014, 34(11): 1130002.

    [25] Haeussinger F B, Sler T, Heinzel S, et al.. Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: An easy-to-use filter method[J]. NeuroImage, 2014, 95(8): 69-79.

    [26] Cui X, Bray S, Reiss A L. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics[J]. NeuroImage, 2010, 49(4): 3039-3046.

    [27] Zhou Zhenyu, Yang Hongyu, Gong Hui, et al.. Brain signal analysis of functional near-infrared imaging based on Hilbert-Huang transform [J]. Acta Optica Sinica, 2007, 27(2): 307-312.

    [28] Peng Mingjin, Li Zhi. Analysis and feature extraction of laser micro-Doppler signatures based on Hilbert-Huang transforms[J]. Chinese J Lasers, 2013, 40(8): 0809004.

    [29] Xu Lu. A Study on Feature Selection Algorithm based on SVM-RFE and Particle Swarm Optimization[D]. Changsha: Hunan Normal University, 2014: 63-75.

    [30] Naseer N, Hong K S. Classification of functional near-infrared spectroscopy signals corresponding to the right- and left-wrist motor imagery for development of a brain-computer interface[J]. Neuroscience Letters, 2013, 553(8): 84-89.

    [31] Kaiser V, Bauernfeind G, Kreilinger A, et al.. Cortical effects of user training in a motor imagery based brain-computer interface measured by fNIRS and EEG[J]. NeuroImage, 2014, 85(1): 432-444.

    Jiang Jin, Jiao Xuejun, Pan Jinjin, Zhang Zhen, Cao Yong, Xiao Yi. Emotional State Recognition Based on Functional Near-Infrared Spectroscopy[J]. Acta Optica Sinica, 2016, 36(3): 317002
    Download Citation