• Laser & Optoelectronics Progress
  • Vol. 61, Issue 16, 1611003 (2024)
Jiaqi Guo1,†, Benxuan Fan1,†, Xin Liu2, Yuhui Liu2..., Xuquan Wang1,3, Yujie Xing1,3, Zhanshan Wang1,3, Xiong Dun1,3,*, Yifan Peng2,** and Xinbin Cheng1,3|Show fewer author(s)
Author Affiliations
  • 1School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong 999077, China
  • 3Institute of Precision Optical Engineering Tongji University, MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
  • show less
    DOI: 10.3788/LOP241397 Cite this Article Set citation alerts
    Jiaqi Guo, Benxuan Fan, Xin Liu, Yuhui Liu, Xuquan Wang, Yujie Xing, Zhanshan Wang, Xiong Dun, Yifan Peng, Xinbin Cheng. Computational Spectral Imaging: Optical Encoding and Algorithm Decoding (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(16): 1611003 Copy Citation Text show less
    References

    [1] Bioucas-Dias J M, Plaza A, Camps-Valls G et al. Hyperspectral remote sensing data analysis and future challenges[J]. IEEE Geoscience and Remote Sensing Magazine, 1, 6-36(2013).

    [2] Pan Z H, Healey G, Prasad M et al. Face recognition in hyperspectral images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25, 1552-1560(2003).

    [3] Pelagotti A, Del Mastio A, De Rosa A et al. Multispectral imaging of paintings[J]. IEEE Signal Processing Magazine, 25, 27-36(2008).

    [4] Levenson R M, Mansfield J R. Multispectral imaging in biology and medicine: slices of life[J]. Cytometry: Part A, 69, 748-758(2006).

    [5] Qin J W, Chao K L, Kim M S et al. Hyperspectral and multispectral imaging for evaluating food safety and quality[J]. Journal of Food Engineering, 118, 157-171(2013).

    [6] Boegh E, Soegaard H, Broge N et al. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture[J]. Remote Sensing of Environment, 81, 179-193(2002).

    [7] Haboudane D, Miller J R, Pattey E et al. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 90, 337-352(2004).

    [8] Porter W M, Enmark H T. A system overview of the airborne visible/infrared imaging spectrometer (aviris)[J]. Proceedings of SPIE, 834, 22-31(1987).

    [9] Basedow R W, Carmer D C, Anderson M E. HYDICE system: implementation and performance[J]. Proceedings of SPIE, 2480, 258-267(1995).

    [10] Gat N. Imaging spectroscopy using tunable filters: a review[J]. Proceedings of SPIE, 405, 50-64(2000).

    [11] Hagen N, Kudenov M W. Review of snapshot spectral imaging technologies[J]. Optical Engineering, 52, 090901(2013).

    [12] Wei H Y, Liu X, Hao X et al. Modeling off-axis diffraction with the least-sampling angular spectrum method[J]. Optica, 10, 959-962(2023).

    [13] Wagadarikar A, John R, Willett R et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 47, B44-B51(2008).

    [14] Arce G R, Brady D J, Carin L et al. Compressive coded aperture spectral imaging: an introduction[J]. IEEE Signal Processing Magazine, 31, 105-115(2014).

    [15] Arguello H, Rueda H, Wu Y H et al. Higher-order computational model for coded aperture spectral imaging[J]. Applied Optics, 52, D12-D21(2013).

    [16] Kittle D, Choi K, Wagadarikar A et al. Multiframe image estimation for coded aperture snapshot spectral imagers[J]. Applied Optics, 49, 6824-6833(2010).

    [17] Huang L Q, Luo R C, Liu X et al. Spectral imaging with deep learning[J]. Light: Science & Applications, 11, 61(2022).

    [18] Arad B, Ben-Shahar O, Leibe B, Matas J, Sebe N et al. Sparse recovery of hyperspectral signal from natural RGB images[M]. Computer vision-ECCV 2016. Lecture notes in computer science, 9911, 19-34(2016).

    [19] Wang L Z, Sun C, Fu Y et al. Hyperspectral image reconstruction using a deep spatial-spectral prior[C], 8024-8033(2019).

    [20] Xiong Z W, Shi Z, Li H Q et al. HSCNN: CNN-based hyperspectral image recovery from spectrally undersampled projections[C], 518-525(2017).

    [21] Lim S, Sohn K H, Lee C. Principal component analysis for compression of hyperspectral images[C], 97-99(2001).

    [22] Keshava N, Mustard J F. Spectral unmixing[J]. IEEE Signal Processing Magazine, 19, 44-57(2002).

    [23] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 52, 1289-1306(2006).

    [24] Willett R M, Marcia R F, Nichols J M. Compressed sensing for practical optical imaging systems: a tutorial[J]. Optical Engineering, 50, 072601(2011).

    [25] August Y, Vachman C, Rivenson Y et al. Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains[J]. Applied Optics, 52, D46-D54(2013).

    [26] Correa C V, Arguello H, Arce G R. Snapshot colored compressive spectral imager[J]. Journal of the Optical Society of America A, 32, 1754-1763(2015).

    [27] Lin X, Liu Y B, Wu J M et al. Spatial-spectral encoded compressive hyperspectral imaging[J]. ACM Transactions on Graphics, 33, 233(2014).

    [28] Rueda H, Arguello H, Arce G R. DMD-based implementation of patterned optical filter arrays for compressive spectral imaging[J]. Journal of the Optical Society of America A, 32, 80-89(2015).

    [29] Lin X, Wetzstein G, Liu Y B et al. Dual-coded compressive hyperspectral imaging[J]. Optics Letters, 39, 2044-2047(2014).

    [30] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008).

    [31] Sun T, Kelly K. Compressive sensing hyperspectral imager[C], CTuA5(2009).

    [32] Chan W L, Charan K, Takhar D et al. A single-pixel terahertz imaging system based on compressed sensing[J]. Applied Physics Letters, 93, 121105(2008).

    [33] Willett R M, Duarte M F, Davenport M A et al. Sparsity and structure in hyperspectral imaging: sensing, reconstruction, and target detection[J]. IEEE Signal Processing Magazine, 31, 116-126(2014).

    [34] Gehm M E, John R, Brady D J et al. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 15, 14013-14027(2007).

    [35] Wagadarikar A A, Pitsianis N P, Sun X B et al. Video rate spectral imaging using a coded aperture snapshot spectral imager[J]. Optics Express, 17, 6368-6388(2009).

    [36] Wu Y H, Mirza I O, Arce G R et al. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system[J]. Optics Letters, 36, 2692-2694(2011).

    [37] Diaz N, Rueda H, Arguello H. High-dynamic range compressive spectral imaging by adaptive filtering[C], 89-93(2015).

    [38] Arguello H, Arce G R. Code aperture optimization for spectrally agile compressive imaging[J]. Journal of the Optical Society of America A, 28, 2400-2413(2011).

    [39] Arguello H, Arce G R. Rank minimization code aperture design for spectrally selective compressive imaging[J]. IEEE Transactions on Image Processing, 22, 941-954(2013).

    [40] Wang L Z, Xiong Z W, Gao D H et al. Dual-camera design for coded aperture snapshot spectral imaging[J]. Applied Optics, 54, 848-858(2015).

    [41] Wang L Z, Xiong Z W, Huang H et al. High-speed hyperspectral video acquisition by combining nyquist and compressive sampling[J]. IEEE transactions on pattern analysis and machine intelligence, 41, 857-870(2018).

    [42] Arguello H, Arce G R. Colored coded aperture design by concentration of measure in compressive spectral imaging[J]. IEEE Transactions on Image Processing, 23, 1896-1908(2014).

    [43] Rueda H, Arguello H, Arce G R. Compressive spectral testbed imaging system based on thin-film color-patterned filter arrays[J]. Applied Optics, 55, 9584-9593(2016).

    [44] Wang X, Zhang Y H, Ma X et al. Compressive spectral imaging system based on liquid crystal tunable filter[J]. Optics Express, 26, 25226-25243(2018).

    [45] Liu X, Li L P, Liu X et al. Investigating deep optics model representation in affecting resolved all-in-focus image quality and depth estimation fidelity[J]. Optics Express, 30, 36973-36984(2022).

    [46] Baek S H, Ikoma H, Jeon D S et al. Single-shot hyperspectral-depth imaging with learned diffractive optics[C], 2631-2640(2021).

    [47] Golub M A, Averbuch A, Nathan M et al. Compressed sensing snapshot spectral imaging by a regular digital camera with an added optical diffuser[J]. Applied Optics, 55, 432-443(2016).

    [48] Sahoo S K, Tang D L, Dang C. Single-shot multispectral imaging with a monochromatic camera[J]. Optica, 4, 1209-1213(2017).

    [49] Monakhova K, Yanny K, Aggarwal N et al. Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a spectral filter array[J]. Optica, 7, 1298-1307(2020).

    [50] Hauser J, Zeligman A, Averbuch A et al. DD-Net: spectral imaging from a monochromatic dispersed and diffused snapshot[J]. Applied Optics, 59, 11196-11208(2020).

    [51] Baek S H, Kim I, Gutierrez D et al. Compact single-shot hyperspectral imaging using a prism[J]. ACM Transactions on Graphics, 36, 217(2017).

    [52] Jeon D S, Baek S H, Yi S et al. Compact snapshot hyperspectral imaging with diffracted rotation[J]. ACM Transactions on Graphics, 38, 117(2019).

    [53] Arguello H, Pinilla S, Peng Y F et al. Shift-variant color-coded diffractive spectral imaging system[J]. Optica, 8, 1424-1434(2021).

    [54] Sitzmann V, Diamond S, Peng Y F et al. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging[J]. ACM Transactions on Graphics, 37, 114(2018).

    [55] Li L G, Wang L Z, Song W T et al. Quantization-aware deep optics for diffractive snapshot hyperspectral imaging[C], 19748-19757(2022).

    [56] Mihoubi S, Losson O, Mathon B et al. Multispectral demosaicing using pseudo-panchromatic image[J]. IEEE Transactions on Computational Imaging, 3, 982-995(2017).

    [57] August Y, Stern A. Compressive sensing spectrometry based on liquid crystal devices[J]. Optics Letters, 38, 4996-4999(2013).

    [58] Yang J W, Cui K Y, Xiong J et al. Real-time ultraspectral imaging chip based on metasurfaces[J]. Acta Optica Sinica, 43, 1623004(2023).

    [59] Wang T T, Cai H X, Li S et al. Research progress of novel metasurface spectral imaging chips[J]. Laser & Optoelectronics Progress, 60, 1106014(2023).

    [60] August I, Oiknine Y, AbuLeil M et al. Miniature compressive ultra-spectral imaging system utilizing a single liquid crystal phase retarder[J]. Scientific Reports, 6, 23524(2016).

    [61] Oiknine Y, August I, Stern A. Multi-aperture snapshot compressive hyperspectral camera[J]. Optics Letters, 43, 5042-5045(2018).

    [62] Wu Z P, Zhang Z Q, Xu Y J et al. Random color filters based on an all-dielectric metasurface for compact hyperspectral imaging[J]. Optics Letters, 47, 4548-4551(2022).

    [63] Zhang Y, Yuan Q, Wu Y F et al. Dispersion-engineering metasurface-enabled integrated spectral imaging[J/OL]. Acta Optica Sinica, 1-14. http://kns.cnki.net/kcm-s/detail/31.1252.O4.20240517.1545.052.html

    [64] Wang Z, Yi S Y, Chen A et al. Single-shot on-chip spectral sensors based on photonic crystal slabs[J]. Nature Communications, 10, 1020(2019).

    [65] Wang C, Liu X Y, Zhang Y et al. Dual-channel switchable metasurface filters for compact spectral imaging with deep compressive reconstruction[J]. Nanomaterials, 13, 2854(2023).

    [66] McClung A, Samudrala S, Torfeh M et al. Snapshot spectral imaging with parallel metasystems[J]. Science Advances, 6, eabc7646(2020).

    [67] Genser N, Seiler J, Kaup A. Camera array for multi-spectral imaging[J]. IEEE Transactions on Image Processing, 29, 9234-9249(2020).

    [68] Huang F, Chen Y T, Wang X S et al. Spectral clustering super-resolution imaging based on multispectral camera array[J]. IEEE Transactions on Image Processing, 32, 1257-1271(2023).

    [69] Zhang M Q, Wang L Z, Zhang L et al. High light efficiency snapshot spectral imaging via spatial multiplexing and spectral mixing[J]. Optics Express, 28, 19837-19850(2020).

    [70] Nie S J, Gu L, Zheng Y Q et al. Deeply learned filter response functions for hyperspectral reconstruction[C], 4767-4776(2018).

    [71] Chen C, Li X Y, Yang G et al. Computational hyperspectral devices based on quasi-random metasurface supercells[J]. Nanoscale, 15, 8854-8862(2023).

    [72] Song H Y, Ma Y G, Han Y B et al. Deep-learned broadband encoding stochastic filters for computational spectroscopic instruments[J]. Advanced Theory and Simulations, 4, 2000299(2021).

    [73] Zhang W Y, Song H Y, He X et al. Deeply learned broadband encoding stochastic hyperspectral imaging[J]. Light: Science & Applications, 10, 108(2021).

    [74] Feng S Q, Wang Z S, Cheng X B et al. Superposition Fabry-Perot filter array for a computational hyperspectral camera[J]. Optics Letters, 48, 1156-1159(2023).

    [75] Xu H, Chen S Q, Hu H Q et al. Wavelength encoding spectral imaging based on the combination of deeply learned filters and an RGB camera[J]. Optics Express, 32, 10741-10760(2024).

    [76] Oiknine Y, August I, Farber V et al. Compressive sensing hyperspectral imaging by spectral multiplexing with liquid crystal[J]. Journal of Imaging, 5, 3(2018).

    [77] Yang J W, Cui K Y, Xiong J et al. Real-time ultraspectral imaging chip based on metasurfaces[J]. Acta Optica Sinica, 43, 1623004(2023).

    [78] Tropp J A, Wright S J. Computational methods for sparse solution of linear inverse problems[J]. Proceedings of the IEEE, 98, 948-958(2010).

    [79] Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 1, 586-597(2007).

    [80] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C], 40-44(1993).

    [81] Wang L Z, Xiong Z W, Gao D H et al. High-speed hyperspectral video acquisition with a dual-camera architecture[C], 4942-4950(2015).

    [82] Aharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 54, 4311-4322(2006).

    [83] Wu J Q, Aeschbacher J, Timofte R. In defense of shallow learned spectral reconstruction from RGB images[C], 471-479(2017).

    [84] Fu Y, Zheng Y R, Zhang L et al. Spectral reflectance recovery from a single RGB image[J]. IEEE Transactions on Computational Imaging, 4, 382-394(2018).

    [85] Galliani S, Lanaras C, Marmanis D et al. Learned spectral super-resolution[EB/OL]. https://arxiv.org/abs/1703.09470

    [86] Yuan X. Generalized alternating projection based total variation minimization for compressive sensing[C], 2539-2543(2016).

    [87] Bioucas-Dias J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 16, 2992-3004(2007).

    [88] Fu Y, Zheng Y Q, Sato I et al. Exploiting spectral-spatial correlation for coded hyperspectral image restoration[C], 3727-3736(2016).

    [89] Liu Y, Yuan X, Suo J L et al. Rank minimization for snapshot compressive imaging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41, 2990-3006(2019).

    [90] Boyd S, Parikh N, Chu E et al. Distributed optimization and statistical learning via the alternating direction method of multipliers[J]. Foundations and Trends® in Machine Learning, 3, 1-122(2010).

    [91] Yang S Y, Wang M, Li P et al. Compressive hyperspectral imaging via sparse tensor and nonlinear compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 53, 5943-5957(2015).

    [92] Wang Y, Lin L, Zhao Q et al. Compressive sensing of hyperspectral images via joint tensor tucker decomposition and weighted total variation regularization[J]. IEEE Geoscience and Remote Sensing Letters, 14, 2457-2461(2017).

    [93] Choi I, Jeon D S, Nam G et al. High-quality hyperspectral reconstruction using a spectral prior[J]. ACM Transactions on Graphics, 36, 218(2017).

    [94] Bacca J, Fonseca Y, Arguello H. Compressive spectral image reconstruction using deep prior and low-rank tensor representation[J]. Applied Optics, 60, 4197-4207(2021).

    [95] Wang L Z, Sun C, Zhang M Q et al. DNU: Deep non-local unrolling for computational spectral imaging[C], 1658-1668(2020).

    [96] Oktem F S, Kar O F, Bezek C D et al. High-resolution multi-spectral imaging with diffractive lenses and learned reconstruction[J]. IEEE Transactions on Computational Imaging, 7, 489-504(2021).

    [97] Wang L S, Wu Z L, Zhong Y et al. Snapshot spectral compressive imaging reconstruction using convolution and contextual Transformer[J]. Photonics Research, 10, 1848-1858(2022).

    [98] Chen Y, Lai W Z, He W et al. Hyperspectral compressive snapshot reconstruction via coupled low-rank subspace representation and self-supervised deep network[J]. IEEE Transactions on Image Processing, 33, 926-941(2024).

    [99] Cai Y H, Lin J, Wang H Q et al. Degradation-aware unfolding half-shuffle transformer for spectral compressive imaging[J]. Advances in Neural Information Processing Systems, 35, 3(2022).

    [100] Li M Y, Fu Y, Liu J et al. Pixel adaptive deep unfolding transformer for hyperspectral image reconstruction[C], 12913-12922(2023).

    [101] Ruder S. An overview of gradient descent optimization algorithms[EB/OL]. https://arxiv.org/abs/1609.04747

    [102] Shi Z, Chen C, Xiong Z W et al. HSCNN+: Advanced CNN-based hyperspectral recovery from RGB images[C], 10520-10528(2018).

    [103] Alvarez-Gila A, van de Weijer J, Garrote E. Adversarial networks for spatial context-aware spectral image reconstruction from RGB[C], 480-490(2017).

    [104] Nguyen R M H, Prasad D K, Brown M S, Fleet D, Pajdla T, Schiele B et al. Training-based spectral reconstruction from a single RGB image[M]. omputer vision-ECCV 2014. Lecture notes in computer science, 8695, 186-201(2014).

    [105] Jia Y, Zheng Y Q, Gu L et al. From RGB to spectrum for natural scenes via manifold-based mapping[C], 4715-4723(2017).

    [106] Arad B, Timofte R, Ben-Shahar O et al. NTIRE 2020 challenge on spectral reconstruction from an RGB image[C], 1806-1822(2020).

    [107] Arad B, Timofte R, Yahel R et al. NTIRE 2022 spectral recovery challenge and data set[C], 862-880(2022).

    [108] Yasuma F, Mitsunaga T, Iso D et al. Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum[J]. IEEE Transactions on Image Processing, 19, 2241-2253(2010).

    [109] Chakrabarti A, Zickler T. Statistics of real-world hyperspectral images[C], 193-200(2011).

    [110] Timofte R, Gu S H, Wu J Q et al. NTIRE 2018 challenge on single image super-resolution: methods and results[C], 965-96511(2018).

    [111] Yan L B, Wang X H, Zhao M et al. Reconstruction of hyperspectral data from RGB images with prior category information[J]. IEEE Transactions on Computational Imaging, 6, 1070-1081(2020).

    [112] Li Y Q, Fu Q, Heidrich W. Multispectral illumination estimation using deep unrolling network[C], 2652-2661(2021).

    [113] Wang L Z, Zhang T, Fu Y et al. HyperReconNet: joint coded aperture optimization and image reconstruction for compressive hyperspectral imaging[J]. IEEE Transactions on Image Processing, 28, 2257-2270(2018).

    [114] Koundinya S, Sharma H, Sharma M et al. 2D-3D CNN based architectures for spectral reconstruction from RGB images[C], 957-9577(2018).

    [115] Xu C, Xu T F, Shi G K et al. Compressive hyperspectral computational imaging via spatio-spectral coding[J]. Acta Optica Sinica, 43, 1511003(2023).

    [116] He K M, Zhang X Y, Ren S Q et al. Deep residual learning for image recognition[C], 770-778(2016).

    [117] Huang G, Liu Z, van der Maaten L et al. Densely connected convolutional networks[C], 2261-2269(2017).

    [118] Ronneberger O, Fischer P, Brox T, Navab N, Hornegger J, Wells W M et al. U-net: convolutional networks for biomedical image segmentation[M]. Medical image computing and computer-assisted intervention- MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [119] Vaswani A, Shazeer N, Parmar N et al. Attention is all you need[EB/OL]. https://arxiv.org/abs/1706.03762

    [120] Yan Y Q, Zhang L, Li J, Lai J H, Liu C L, Chen X L et al. Accurate spectral super-resolution from single RGB image using multi-scale CNN[M]. Pattern recognition and computer vision. Lecture notes in computer science, 11257, 206-217(2018).

    [121] Miao X, Yuan X, Pu Y C et al. Lambda-net: reconstruct hyperspectral images from a snapshot measurement[C], 4058-4068(2019).

    [122] Liu L Q, Lei S, Shi Z W et al. Hyperspectral remote sensing imagery generation from RGB images based on joint discrimination[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 7624-7636(2021).

    [123] Zhao Y Z, Po L M, Yan Q et al. Hierarchical regression network for spectral reconstruction from RGB images[C], 1695-1704(2020).

    [124] Li J J, Wu C X, Song R et al. Adaptive weighted attention network with camera spectral sensitivity prior for spectral reconstruction from RGB images[C], 1894-1903(2020).

    [125] Meng Z Y, Ma J W, Yuan X, Vedaldi A, Bischof H, Brox T et al. End-to-end low cost compressive spectral imaging with spatial-spectral self-attention[M]. Computer vision-ECCV 2020 Lecture notes in computer science, 12368, 187-204(2020).

    [126] Li J J, Wu C X, Song R et al. Hybrid 2-D-3-D deep residual attentional network with structure tensor constraints for spectral super-resolution of RGB images[J]. IEEE Transactions on Geoscience and Remote Sensing, 59, 2321-2335(2021).

    [127] Hu X W, Cai Y H, Lin J et al. HDNet: high-resolution dual-domain learning for spectral compressive imaging[C], 17521-17530(2022).

    [128] Feng K, Zeng H J, Zhao Y Q et al. Unsupervised spectral demosaicing with lightweight spectral attention networks[J]. IEEE Transactions on Image Processing, 33, 1655-1669(2024).

    [129] Wang X Y, Huang Z X, Zhang S F et al. GMSR: gradient-guided mamba for spectral reconstruction from RGB images[EB/OL]. http://arxiv.org/abs/2405.07777v1

    [130] Dosovitskiy A, Beyer L, Kolesnikov A et al. An image is worth16x16 words: transformers for image recognition at scale[EB/OL]. https://arxiv.org/abs/2010.11929

    [131] Cai Y H, Lin J, Hu X W et al. Mask-guided spectral-wise transformer for efficient hyperspectral image reconstruction[C], 17481-17490(2022).

    [132] Cai Y H, Lin J, Hu X W, Avidan S, Brostow G, Cissé M et al. Coarse-to-fine sparse transformer for hyperspectral image reconstruction[M]. Computer vision-ECCV 2022. Lecture notes in computer science, 13677, 686-704(2022).

    [133] Cai Y H, Lin J, Lin Z D et al. MST++: multi-stage spectral-wise transformer for efficient spectral reconstruction[C], 744-754(2022).

    [134] Liao X M, He L R, Mao J Y et al. Spectral superresolution using transformer with con-volutional spectral self-attention[J]. Remote Sensing, 16, 1688-1698(2024).

    [135] Gedalin D, Oiknine Y, Stern A. DeepCubeNet: reconstruction of spectrally compressive sensed hyperspectral images with deep neural networks[J]. Optics Express, 27, 35811-35822(2019).

    Jiaqi Guo, Benxuan Fan, Xin Liu, Yuhui Liu, Xuquan Wang, Yujie Xing, Zhanshan Wang, Xiong Dun, Yifan Peng, Xinbin Cheng. Computational Spectral Imaging: Optical Encoding and Algorithm Decoding (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(16): 1611003
    Download Citation