• Chinese Journal of Lasers
  • Vol. 47, Issue 2, 207024 (2020)
Pan Wenhui, Chen Bingling, Zhang Jianguo, Gu Zhenyu, Xiong Jia, Zhang Dan, Yang Zhigang, and Qu Junle
Author Affiliations
  • Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Center for Biomedical Photonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
  • show less
    DOI: 10.3788/CJL202047.0207024 Cite this Article Set citation alerts
    Pan Wenhui, Chen Bingling, Zhang Jianguo, Gu Zhenyu, Xiong Jia, Zhang Dan, Yang Zhigang, Qu Junle. Compressed Sensing STORM Super-Resolution Image Reconstruction Based on Noise Correction-Principal Component Analysis Preprocessing Algorithm[J]. Chinese Journal of Lasers, 2020, 47(2): 207024 Copy Citation Text show less

    Abstract

    The low temporal resolution of stochastic optical reconstruction microscopy (STORM) limits its ability to observe dynamic events in live cells. Further, the post-processing analysis and reconstruction algorithms have an important effect on super-resolution images. In this study, we report a new noise-correction principal component analysis method for single-molecule localization microscopy against fluorescent spot overlapping and excessive background noise in a single frame of images owing to high-density labeling and high camera-sampling frequency. The proposed method can improve the positioning accuracy of existing localization methods by pre-processing the raw images acquired by the single molecule localization microscopy before reconstruction. In addition, this method can accurately distinguish the overlapping molecules. Therefore, it is suitable for samples exhibiting a high fluorophore density. Thus, the proposed method improves the temporal resolution of super-resolution imaging, providing a powerful technical support for the STORM imaging of live cells.
    Pan Wenhui, Chen Bingling, Zhang Jianguo, Gu Zhenyu, Xiong Jia, Zhang Dan, Yang Zhigang, Qu Junle. Compressed Sensing STORM Super-Resolution Image Reconstruction Based on Noise Correction-Principal Component Analysis Preprocessing Algorithm[J]. Chinese Journal of Lasers, 2020, 47(2): 207024
    Download Citation