• Laser & Optoelectronics Progress
  • Vol. 56, Issue 22, 220501 (2019)
Chao An, Jinkui Chu*, and Ran Zhang
Author Affiliations
  • School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
  • show less
    DOI: 10.3788/LOP56.220501 Cite this Article Set citation alerts
    Chao An, Jinkui Chu, Ran Zhang. Optimization of Bilayer Sub-Wavelength Metallic Grating Based on Genetic Algorithm[J]. Laser & Optoelectronics Progress, 2019, 56(22): 220501 Copy Citation Text show less
    References

    [1] Yang Z Y, Lu Y F. Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions[J]. Optics Express, 15, 9510-9519(2007). http://www.ncbi.nlm.nih.gov/pubmed/19547298

    [2] Weber T, Käsebier T, Kley E B et al. Broadband iridium wire grid polarizer for UV applications[J]. Optics Letters, 36, 445-447(2011). http://www.onacademic.com/detail/journal_1000035243032410_fba9.html

    [3] Ekinci Y, Solak H H, David C et al. Bilayer Al wire-grids as broadband and high-performance polarizers[J]. Optics Express, 14, 2323-2334(2006). http://europepmc.org/abstract/MED/19503570

    [4] Chu J K, Zhang Y J, Wang Z W et al. Transmission properties of triple-layer subwavelength grating[J]. Nanotechnology and Precision Engineering, 11, 442-446(2013).

    [5] Tan Q, Xu Q F, Xie N. Design of sub-wavelength radially polarized grating[J]. Opto-Electronic Engineering, 44, 345-350(2017).

    [6] Barho F B, Gonzalez-Posada F. Milla-Rodrigo M J, et al. All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range[J]. Optics Express, 24, 16175-16190(2016). http://www.ncbi.nlm.nih.gov/pubmed/27410884

    [7] Yamada I, Kintaka K, Nishii J et al. Mid-infrared wire-grid polarizer with silicides[J]. Optics Letters, 33, 258-260(2008). http://test.europepmc.org/abstract/MED/18246147

    [8] Li N, Kong W J, Ji S Y et al. Broadband achromatic phase retarder based on subwavelength metal dielectric gratings[J]. Acta Optica Sinica, 37, 0205001(2017).

    [9] Chen Y, Tian Y N, He L et al. Research on subwavelength metal grating/dielectric/metal hybrid waveguide sensing structure[J]. Chinese Journal of Lasers, 45, 0110001(2018).

    [10] Xue Y F, Wang C, Zhang G J et al. Compound polarized wavelength filters with a single subwavelength structure[J]. Optics Communications, 284, 501-509(2011). http://www.sciencedirect.com/science/article/pii/S0030401810009624

    [11] Kumagai H, Honma H, Ishida M et al. Fabrication of a thin plasmonic color sheet embedded with Al subwavelength gratings in parylene[J]. Displays, 45, 63-69(2016). http://www.sciencedirect.com/science/article/pii/S0141938216300701

    [12] Chu J K, Zhang Y J, Wang Z W et al. Polarizing color filter based on subwavelength metallic grating with grooves carved in[J]. Optics Communications, 315, 32-36(2014). http://www.sciencedirect.com/science/article/pii/S0030401813009863

    [13] Okamoto H, Noda K, Sakamoto M et al. Genetic algorithm-based design method for multilevel anisotropic diffraction gratings[J]. Optical Review, 24, 510-516(2017). http://link.springer.com/10.1007/s10043-017-0341-z

    [14] Semwal G, Rastogi V. Design of LPWG broad band filter with genetic algorithm optimization[J]. Journal of Optics, 43, 165-168(2014). http://link.springer.com/article/10.1007/s12596-014-0191-z

    [15] Teng F C, Yin W W, Wu F et al. Application of genetic algorithm in quasi-static fiber grating wavelength demodulation technology[J]. Optoelectronics Letters, 3, 271-274(2007). http://www.cnki.com.cn/Article/CJFDTotal-OELJ200704011.htm

    [16] Gao J, Wang Q K, Wang D Y. Design of transmittance filters based on particle swarm optimization algorithm[J]. Laser Technology, 42, 617-621(2018).

    [17] Che W K, Kong W J, Zhang Y L et al. Broadband polarization beam splitter based on subwavelength grating sandwiched between silica layers[J]. Laser Journal, 39, 12-15(2018).

    [18] Chu J K, Wang Z W, Zhang Y J et al. Integrated blue-sensitive polarization-dependent photodetector[J]. Nanolithography, MEMS, and MOEMS, 12, 033005(2013). http://spie.org/Publications/Journal/10.1117/1.JMM.12.3.033005

    [19] Yee K S. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 14, 302-307(1966). http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1138693

    [20] Taflove A, Hagness S C, Piket-May M. 9-computational electromagnetics: the finite-difference time-domain method[M]. ∥The Electrical Engineering Handbook. Singapore: Elsevier, 629-670(2005).

    [21] Veysoglu M E, Shin R T, Kong J A. A finite-difference time-domain analysis of wave scattering from periodic surfaces: oblique incidence case[J]. Journal of Electromagnetic Waves and Applications, 7, 1595-1607(1993). http://www.tandfonline.com/doi/abs/10.1163/156939393X00020

    [22] Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 114, 185-200(1994). http://www.sciencedirect.com/science/article/pii/S0021999184711594

    [23] Palik E D[M]. Handbook of optical constants of solids, 3, 369-406(1997).

    [24] Zhang N, Chu J K, Zhao K C et al. The design of the subwavelength wire-grid polarizers based on rigorous couple-wave theory[J]. Chinese Journal of Sensors and Actuators, 19, 1739-1743(2006).

    Chao An, Jinkui Chu, Ran Zhang. Optimization of Bilayer Sub-Wavelength Metallic Grating Based on Genetic Algorithm[J]. Laser & Optoelectronics Progress, 2019, 56(22): 220501
    Download Citation